Suppr超能文献

一种用于动态环境中目标检测和跟踪的无特征方法。

A featureless approach for object detection and tracking in dynamic environments.

机构信息

National Center of Robotics and Automation (NCRA), Department of Mechatronics and Control Engineering, University of Engineering and Technology Lahore, Lahore, Pakistan.

Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan.

出版信息

PLoS One. 2023 Jan 17;18(1):e0280476. doi: 10.1371/journal.pone.0280476. eCollection 2023.

Abstract

One of the challenging problems in mobile robotics is mapping a dynamic environment for navigating robots. In order to disambiguate multiple moving obstacles, state-of-art techniques often solve some form of dynamic SLAM (Simultaneous Localization and Mapping) problem. Unfortunately, their higher computational complexity press the need for simpler and more efficient approaches suitable for real-time embedded systems. In this paper, we present a ROS-based efficient algorithm for constructing dynamic maps, which exploits the spatial-temporal locality for detecting and tracking moving objects without relying on prior knowledge of their geometrical features. A two-prong contribution of this work is as follows: first, an efficient scheme for decoding sensory data into an estimated time-varying object boundary that ultimately decides its orientation and trajectory based on the iteratively updated robot Field of View (FoV); second, lower time-complexity of updating the dynamic environment through manipulating spatial-temporal locality available in the object motion profile. Unlike existing approaches, the snapshots of the environment remain constant in the number of moving objects. We validate the efficacy of our algorithm on both V-Rep simulations and real-life experiments with a wide array of dynamic environments. We show that the algorithm accurately detects and tracks objects with a high probability as long as sensor noise is low and the speed of moving objects remains within acceptable limits.

摘要

移动机器人领域的一个挑战问题是为机器人导航映射动态环境。为了解决多个移动障碍物的歧义问题,最先进的技术通常会解决某种形式的动态 SLAM(同时定位与建图)问题。不幸的是,它们较高的计算复杂性要求更简单、更高效的方法,适用于实时嵌入式系统。在本文中,我们提出了一种基于 ROS 的高效算法,用于构建动态地图,该算法利用时空局部性来检测和跟踪移动目标,而无需依赖其几何特征的先验知识。这项工作的两个贡献如下:首先,一种将传感器数据解码为估计的时变对象边界的有效方案,该方案最终根据机器人视场(Field of View,FoV)的迭代更新来确定其方向和轨迹;其次,通过操纵对象运动轨迹中的时空局部性来降低动态环境更新的时间复杂度。与现有方法不同,环境的快照在移动对象的数量上保持不变。我们在 V-Rep 模拟和具有广泛动态环境的实际实验中验证了我们算法的有效性。我们表明,只要传感器噪声较低且移动对象的速度在可接受范围内,该算法就能以高概率准确地检测和跟踪对象。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a695/9844841/572b4157fe44/pone.0280476.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验