Institute of Geophysics, Polish Academy of Science, ul. Księcia Janusza 64, 01452, Warsaw, Poland.
Section 3.5 Surface Geochemistry, GeoForschungsZentrum, Potsdam, Telegrafenberg, 14473, Potsdam, Germany.
Sci Rep. 2023 Jan 17;13(1):895. doi: 10.1038/s41598-023-27843-6.
Here, we report small randomly-distributed crystalline lead (Pb) nanospheres occurring in detrital zircon grains obtained from a weakly metamorphosed Archean conglomerate at Jack Hills, Western Australia, making this the third known global example of this phenomenon. They form in zircon crystals ranging from Hadean (> 4 billion years-Ga) to Eoarchean (> 3.6 Ga) in age, but are absent from Paleoarchean (~ 3.4 Ga) crystals. Unlike previous discoveries of nanospheres in zircon from Precambrian gneisses in Antarctica and India, detrital zircon from Jack Hills shows no evidence of ever undergoing ultra-high temperature (UHT) metamorphism, either before or after deposition, therefore implying that nanospheres can form at temperatures lower than ca. 900 °C. The nanospheres are composed of radiogenic Pb released by the breakdown of uranium (U) and thorium (Th) and are present in zircon irrespective of its U, Th and water contents, its oxygen isotopic composition, and the degree of discordance due to Pb loss or gain. The nanospheres pre-date annealed cracks in the crystals, showing that, once formed, they effectively 'freeze' radiogenic Pb in the zircon structure, precluding any further interaction during subsequent geological processes. Both Pb nanoclusters and nanospheres are now reported from Jack Hills, and it appears likely the former is a precursor stage in the formation of the latter. Although the precise mechanism for this transition remains unresolved, a later thermal event is required, but this likely did not reach UHT conditions at Jack Hills.
在这里,我们报告了在澳大利亚西部杰克山弱变质太古代砾岩中获得的碎屑锆石颗粒中出现的小而随机分布的结晶铅 (Pb) 纳米球,这是全球第三个已知的此类现象。它们形成于年龄范围从太古代早期(>40 亿年-Ga)到太古代早期(>3.6 Ga)的锆石晶体中,但不存在于古太古代(~3.4 Ga)的晶体中。与之前在南极洲和印度前寒武纪片麻岩中锆石中发现的纳米球不同,来自杰克山的碎屑锆石没有经历过超高温(UHT)变质的证据,无论是在沉积之前还是之后,因此暗示纳米球可以在低于约 900°C 的温度下形成。纳米球由铀 (U) 和钍 (Th) 分解释放的放射性 Pb 组成,并且存在于锆石中,与 U、Th 和水含量、其氧同位素组成以及由于 Pb 损失或获得而导致的不一致程度无关。纳米球先于晶体中的退火裂纹形成,表明一旦形成,它们就有效地将放射性 Pb“冻结”在锆石结构中,排除了在随后的地质过程中进一步相互作用的可能性。现在已经在杰克山报告了 Pb 纳米团簇和纳米球,并且前者似乎是后者形成的前体阶段。尽管这种转变的确切机制仍未解决,但需要发生后期的热事件,但这种事件不太可能达到杰克山的 UHT 条件。