Suppr超能文献

血管内超声(IVUS)图像冠状动脉边界分割算法的最新综述

A State-Of-The-Art Review on Coronary Artery Border Segmentation Algorithms for Intravascular Ultrasound (IVUS) Images.

作者信息

Arora Priyanka, Singh Parminder, Girdhar Akshay, Vijayvergiya Rajesh

机构信息

Research Scholar, IKG Punjab Technical University, Punjab, India.

Department of Computer Science and Engineering, Guru Nanak Dev Engineering College, Ludhiana, Punjab, India.

出版信息

Cardiovasc Eng Technol. 2023 Apr;14(2):264-295. doi: 10.1007/s13239-023-00654-6. Epub 2023 Jan 17.

Abstract

Intravascular Ultrasound images (IVUS) is a useful guide for medical practitioners to identify the vascular status of coronary arteries in human beings. IVUS is a unique intracoronary imaging modality that is used as an adjunct to angioplasty to view vessel structures using a catheter with high resolutions. Segmentation of IVUS images has always remained a challenging task due to various impediments, for example, similar tissue components, vessel structures, and artifacts imposed during the acquisition process. Many researchers have applied various techniques to develop standard methods of image interpretation, however, the ultimate goal is still elusive to most researchers. This challenge was presented at the MICCAI- Computing and Visualization for (Intra)Vascular Imaging (CVII) workshop in 2011. This paper presents a major review of recently reported work in the field, with a detailed analysis of various segmentation techniques applied in IVUS, and highlights the directions for future research. The findings recommend a reference database with a larger number of samples acquired at varied transducer frequencies with special consideration towards complex lesions, suitable validation metrics, and ground-truth definition as a standard against which to compare new and current algorithms.

摘要

血管内超声图像(IVUS)是医生识别人体冠状动脉血管状况的有用指南。IVUS是一种独特的冠状动脉内成像方式,用作血管成形术的辅助手段,通过带有高分辨率的导管来观察血管结构。由于各种障碍,例如相似的组织成分、血管结构以及采集过程中产生的伪影,IVUS图像的分割一直是一项具有挑战性的任务。许多研究人员应用了各种技术来开发图像解释的标准方法,然而,对大多数研究人员来说,最终目标仍然难以实现。2011年在医学图像计算与计算机辅助干预国际会议(MICCAI)的血管内成像计算与可视化(CVII)研讨会上提出了这一挑战。本文对该领域最近报道的工作进行了主要综述,详细分析了应用于IVUS的各种分割技术,并突出了未来研究的方向。研究结果推荐建立一个参考数据库,其中包含大量在不同换能器频率下采集的样本,特别考虑复杂病变、合适的验证指标以及作为比较新算法和现有算法标准的地面真值定义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验