Suppr超能文献

具有时间一致性的血管内超声图像分割深度学习模型。

Deep learning model for intravascular ultrasound image segmentation with temporal consistency.

机构信息

Pohang University of Science and Technology (POSTECH), Seoul, Korea.

Mediwhale Inc., Seoul, Korea.

出版信息

Int J Cardiovasc Imaging. 2024 Nov;40(11):2283-2292. doi: 10.1007/s10554-024-03221-9. Epub 2024 Aug 27.

Abstract

This study was conducted to develop and validate a deep learning model for delineating intravascular ultrasound (IVUS) images of coronary arteries.Using a total of 1240 40-MHz IVUS pullbacks with 191,407 frames, the model for lumen and external elastic membrane (EEM) segmentation was developed. Both frame- and vessel-level performances and clinical impact of the model on 3-year cardiovascular events were evaluated in the independent data sets. In the test set, the Dice similarity coefficients (DSC) were 0.966 ± 0.025 and 0.982 ± 0.017 for the lumen and EEM, respectively. Even at sites of extensive attenuation, the frame-level performance was excellent (DSCs > 0.96 for the lumen and EEM). The model (vs. the expert) showed a better temporal consistency for contouring the EEM. The agreement between the model- vs. the expert-derived cross-sectional and volumetric measurements was excellent in the independent retrospective cohort (all, intra-class coefficients > 0.94). The model-derived percent atheroma volume > 52.5% (area under curve 0.70, sensitivity 71% and specificity 67%) and plaque burden at the minimal lumen area site (area under curve 0.72, sensitivity 72% and specificity 66%) best predicted 3-year cardiac death and nonculprit-related target vessel revascularization, respectively. In the stented segment, the DSCs > 0.96 for contouring lumen and EEM were achieved. Applied to the 60-MHz IVUS images, the DSCs were > 0.97. In the external cohort with 45-MHz IVUS, the DSCs were > 0.96. The deep learning model accurately delineated vascular geometry, which may be cost-saving and support clinical decision-making.

摘要

本研究旨在开发和验证一种用于描绘冠状动脉血管内超声(IVUS)图像的深度学习模型。使用总共 1240 个 40MHz 的 IVUS 回拉,共有 191407 个帧,开发了用于管腔和外弹性膜(EEM)分割的模型。在独立数据集上评估了模型在帧级和血管级的性能以及对 3 年心血管事件的临床影响。在测试集中,管腔和 EEM 的 Dice 相似系数(DSC)分别为 0.966±0.025 和 0.982±0.017。即使在广泛衰减的部位,帧级性能也非常出色(管腔和 EEM 的 DSCs>0.96)。与专家相比,该模型在描绘 EEM 方面具有更好的时间一致性。在独立的回顾性队列中,模型与专家得出的横截面和体积测量值之间的一致性非常好(所有,内类系数>0.94)。模型得出的动脉粥样斑块体积百分比>52.5%(曲线下面积 0.70,敏感性 71%,特异性 67%)和最小管腔面积部位的斑块负荷(曲线下面积 0.72,敏感性 72%,特异性 66%)分别最佳预测 3 年心脏死亡和非罪犯相关靶血管血运重建。在支架段,实现了管腔和 EEM 的轮廓 DSC>0.96。应用于 60MHz 的 IVUS 图像,DSC>0.97。在具有 45MHz IVUS 的外部队列中,DSC>0.96。深度学习模型准确地描绘了血管几何形状,这可能具有成本效益,并支持临床决策。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验