Suppr超能文献

磁共振纹理分析在鉴别小及极小肾细胞癌亚型中的应用

MR texture analysis in differentiation of small and very small renal cell carcinoma subtypes.

作者信息

Wang Yichen, Zhang Xinxin, Zhang Jin, Zhang Lianyu, Zhang Jie, Chen Yan

机构信息

Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.

出版信息

Abdom Radiol (NY). 2023 Mar;48(3):1044-1050. doi: 10.1007/s00261-022-03794-w. Epub 2023 Jan 17.

Abstract

PURPOSE

To explore the diagnostic efficacy of MR-based texture analysis in differentiation of small (≤ 4 cm) and very small (≤ 2 cm) renal cell carcinoma subtypes.

METHODS

One hundred and eight patients with pT1a (≤ 4 cm) renal cell carcinoma and pretreatment MRI were enrolled in this retrospective study. Histogram and gray-level co-occurrence matrix (GLCM) parameters were extracted from whole-tumor images. Among subtypes, patient age, tumor size, histological grading and texture parameters were compared. Diagnostic model using combination of texture parameters was constructed using logistic regression and validated using fivefold cross-validation. AUC with 95% CI, accuracy, sensitivity and specificity for subtype differentiation are reported. Further we explored the distinguishing ability of texture parameters and diagnostic model in very small (≤ 2 cm) RCC subgroups.

RESULTS

Significant texture parameters among RCC subtypes were identified. For small (≤ 4 cm) renal cell carcinoma subtyping, combining models based on texture parameters achieved good AUCs for differentiating ccRCC vs. non-ccRCC, chRCC vs. non-chRCC and ccRCC vs. chRCC (0.79, 0.74 and 0.81). Further, in subgroups of very small (≤ 2 cm) RCCs, diagnostic models had better differentiating performances, achieving AUCs of 0.88, 0.99, 0.96 in differentiating ccRCC vs. non-ccRCC, chRCC vs. non-chRCC and ccRCC vs. chRCC.

CONCLUSION

MR texture analysis may help to differentiate small (≤ 4 cm) and very small (≤ 2 cm) RCC subtypes. This non-invasive method can potentially provide additional information for localized RCC treatment and surveillance strategy.

摘要

目的

探讨基于磁共振成像(MR)的纹理分析在鉴别小(≤4 cm)和非常小(≤2 cm)肾细胞癌亚型中的诊断效能。

方法

本回顾性研究纳入了108例pT1a(≤4 cm)肾细胞癌患者及术前MRI资料。从全肿瘤图像中提取直方图和灰度共生矩阵(GLCM)参数。比较各亚型患者的年龄、肿瘤大小、组织学分级和纹理参数。采用逻辑回归构建纹理参数组合的诊断模型,并通过五折交叉验证进行验证。报告亚型分化的AUC(95%可信区间)、准确性、敏感性和特异性。进一步探讨纹理参数和诊断模型在非常小(≤2 cm)肾细胞癌亚组中的鉴别能力。

结果

确定了肾细胞癌亚型之间的显著纹理参数。对于小(≤4 cm)肾细胞癌亚型分类,基于纹理参数的组合模型在鉴别透明细胞肾细胞癌(ccRCC)与非ccRCC、嗜酸性细胞肾细胞癌(chRCC)与非chRCC以及ccRCC与chRCC方面取得了良好的AUC(分别为0.79、0.74和0.81)。此外,在非常小(≤2 cm)肾细胞癌亚组中,诊断模型具有更好的鉴别性能,在鉴别ccRCC与非ccRCC、chRCC与非chRCC以及ccRCC与chRCC时的AUC分别为0.88、0.99和0.96。

结论

MR纹理分析可能有助于鉴别小(≤4 cm)和非常小(≤2 cm)肾细胞癌亚型。这种非侵入性方法可能为局限性肾细胞癌的治疗和监测策略提供额外信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验