Department of Industrial Engineering & Management, National Chin-Yi University of Technology, Taichung, Taiwan.
Math Biosci Eng. 2023 Jan;20(1):241-268. doi: 10.3934/mbe.2023011. Epub 2022 Sep 30.
Fruits require different planting techniques at different growth stages. Traditionally, the maturity stage of fruit is judged visually, which is time-consuming and labor-intensive. Fruits differ in size and color, and sometimes leaves or branches occult some of fruits, limiting automatic detection of growth stages in a real environment. Based on YOLOV4-Tiny, this study proposes a GCS-YOLOV4-Tiny model by (1) adding squeeze and excitation (SE) and the spatial pyramid pooling (SPP) modules to improve the accuracy of the model and (2) using the group convolution to reduce the size of the model and finally achieve faster detection speed. The proposed GCS-YOLOV4-Tiny model was executed on three public fruit datasets. Results have shown that GCS-YOLOV4-Tiny has favorable performance on mAP, Recall, F1-Score and Average IoU on Mango YOLO and Rpi-Tomato datasets. In addition, with the smallest model size of 20.70 MB, the mAP, Recall, F1-score, Precision and Average IoU of GCS-YOLOV4-Tiny achieve 93.42 ± 0.44, 91.00 ± 1.87, 90.80 ± 2.59, 90.80 ± 2.77 and 76.94 ± 1.35%, respectively, on F. margarita dataset. The detection results outperform the state-of-the-art YOLOV4-Tiny model with a 17.45% increase in mAP and a 13.80% increase in F1-score. The proposed model provides an effective and efficient performance to detect different growth stages of fruits and can be extended for different fruits and crops for object or disease detections.
水果在不同的生长阶段需要不同的种植技术。传统上,水果的成熟阶段是通过视觉判断的,这既费时又费力。水果的大小和颜色不同,有时叶子或树枝会遮挡一些水果,限制了在真实环境中对生长阶段的自动检测。本研究基于 YOLOV4-Tiny,通过(1)添加 squeeze and excitation(SE)和 spatial pyramid pooling(SPP)模块来提高模型的准确性,以及(2)使用 group convolution 来减小模型的大小,最终实现更快的检测速度,提出了 GCS-YOLOV4-Tiny 模型。该提出的 GCS-YOLOV4-Tiny 模型在三个公共水果数据集上进行了执行。结果表明,GCS-YOLOV4-Tiny 在 Mango YOLO 和 Rpi-Tomato 数据集上的 mAP、Recall、F1-Score 和 Average IoU 方面表现良好。此外,该模型具有最小的 20.70MB 模型大小,在 F. margarita 数据集上,GCS-YOLOV4-Tiny 的 mAP、Recall、F1-score、Precision 和 Average IoU 分别达到 93.42±0.44、91.00±1.87、90.80±2.59、90.80±2.77 和 76.94±1.35%。检测结果优于最先进的 YOLOV4-Tiny 模型,mAP 提高了 17.45%,F1-score 提高了 13.80%。所提出的模型为检测不同生长阶段的水果提供了有效和高效的性能,并且可以扩展到不同的水果和作物,用于目标或疾病检测。