Suppr超能文献

基于深度学习的甘蔗茎节切割检测与定位

Sugarcane stem node detection and localization for cutting using deep learning.

作者信息

Wang Weiwei, Li Cheng, Wang Kui, Tang Lingling, Ndiluau Pedro Final, Cao Yuhe

机构信息

School of Engineering, Anhui Agricultural University, Hefei,  China.

Anhui Intelligent Agricultural Machinery and Equipment Engineering Laboratory, College of Engineering, Anhui Agricultural University, Hefei,  China.

出版信息

Front Plant Sci. 2022 Dec 12;13:1089961. doi: 10.3389/fpls.2022.1089961. eCollection 2022.

Abstract

INTRODUCTION

In order to promote sugarcane pre-cut seed good seed and good method planting technology, we combine the development of sugarcane pre-cut seed intelligent 0p99oposeed cutting machine to realize the accurate and fast identification and cutting of sugarcane stem nodes.

METHODS

In this paper, we proposed an algorithm to improve YOLOv4-Tiny for sugarcane stem node recognition. Based on the original YOLOv4-Tiny network, the three maximum pooling layers of the original YOLOv4-tiny network were replaced with SPP (Spatial Pyramid Pooling) modules, which fuse the local and global features of the images and enhance the accurate localization ability of the network. And a 1×1 convolution module was added to each feature layer to reduce the parameters of the network and improve the prediction speed of the network.

RESULTS

On the sugarcane dataset, compared with the Faster-RCNN algorithm and YOLOv4 algorithm, the improved algorithm yielded an mean accuracy precision (MAP) of 99.11%, a detection accuracy of 97.07%, and a transmission frame per second (fps) of 30, which can quickly and accurately detect and identify sugarcane stem nodes.

DISCUSSION

In this paper, the improved algorithm is deployed in the sugarcane stem node fast identification and dynamic cutting system to achieve accurate and fast sugarcane stem node identification and cutting in real time. It improves the seed cutting quality and cutting efficiency and reduces the labor intensity.

摘要

引言

为推广甘蔗预切种茎良种良法种植技术,结合甘蔗预切种茎智能切种机的研发,实现甘蔗茎节的精准快速识别与切割。

方法

本文提出一种改进YOLOv4-Tiny用于甘蔗茎节识别的算法。在原始YOLOv4-Tiny网络基础上,将原始YOLOv4-tiny网络的三个最大池化层替换为SPP(空间金字塔池化)模块,融合图像的局部和全局特征,增强网络的精确定位能力。并在每个特征层添加一个1×1卷积模块,减少网络参数,提高网络预测速度。

结果

在甘蔗数据集上,与Faster-RCNN算法和YOLOv4算法相比,改进算法的平均精度均值(MAP)为99.11%,检测准确率为97.07%,每秒传输帧数(fps)为30,能够快速准确地检测和识别甘蔗茎节。

讨论

本文将改进算法部署在甘蔗茎节快速识别与动态切割系统中,实现实时准确快速的甘蔗茎节识别与切割。提高了切种质量和切割效率,降低了劳动强度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc8c/9791034/0ea783241fa3/fpls-13-1089961-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验