Suppr超能文献

利用小型真实世界心电图和光电容积脉搏波描记图数据集,应用机器学习进行血压估计。

Applied machine learning for blood pressure estimation using a small, real-world electrocardiogram and photoplethysmogram dataset.

作者信息

Wong Mark Kei Fong, Hei Hao, Lim Si Zhou, Ng Eddie Yin-Kwee

机构信息

School of Mechanical and Aerospace Engineering, Nanyang Technological University, 639798, Singapore.

School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore.

出版信息

Math Biosci Eng. 2023 Jan;20(1):975-997. doi: 10.3934/mbe.2023045. Epub 2022 Oct 21.

Abstract

Applying machine learning techniques to electrocardiography and photoplethysmography signals and their multivariate-derived waveforms is an ongoing effort to estimate non-occlusive blood pressure. Unfortunately, real ambulatory electrocardiography and photoplethysmography waveforms are inevitably affected by motion and noise artifacts, so established machine learning architectures perform poorly when trained on data of the Multiparameter Intelligent Monitoring in Intensive Care II type, a publicly available ICU database. Our study addresses this problem by applying four well-established machine learning methods, i.e., random forest regression, support vector regression, Adaboost regression and artificial neural networks, to a small, self-sampled electrocardiography-photoplethysmography dataset (n = 54) to improve the robustness of machine learning to real-world BP estimates. We evaluated the performance using a selection of optimal feature morphologies of waveforms by using pulse arrival time, morphological and frequency photoplethysmography parameters and heart rate variability as characterization data. On the basis of the root mean square error and mean absolute error, our study showed that support vector regression gave the best performance for blood pressure estimation from noisy data, achieving an mean absolute error of 6.97 mmHg, which meets the level C criteria set by the British Hypertension Society. We demonstrate that ambulatory electrocardiography- photoplethysmography signals acquired by mobile discrete devices can be used to estimate blood pressure.

摘要

将机器学习技术应用于心电图和光电容积脉搏波信号及其多变量衍生波形是目前用于估计非阻塞性血压的一项工作。不幸的是,实际的动态心电图和光电容积脉搏波波形不可避免地会受到运动和噪声伪影的影响,因此,在公开可用的重症监护II型多参数智能监测数据库的数据上进行训练时,既定的机器学习架构表现不佳。我们的研究通过将四种成熟的机器学习方法,即随机森林回归、支持向量回归、Adaboost回归和人工神经网络,应用于一个小型的、自采样的心电图-光电容积脉搏波数据集(n = 54)来解决这个问题,以提高机器学习对现实世界血压估计的稳健性。我们通过使用脉搏到达时间、形态学和频率光电容积脉搏波参数以及心率变异性作为特征数据,选择波形的最佳特征形态来评估性能。基于均方根误差和平均绝对误差,我们的研究表明,支持向量回归在从噪声数据估计血压方面表现最佳,平均绝对误差为6.97 mmHg,达到了英国高血压学会设定的C级标准。我们证明,通过移动离散设备采集的动态心电图-光电容积脉搏波信号可用于估计血压。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验