Suppr超能文献

通过阳离子异质结构对镍位的电子结构进行调制,以优化碱性溶液中乙醇电氧化活性。

Electronic Structure Modulation of Nickel Sites by Cationic Heterostructures to Optimize Ethanol Electrooxidation Activity in Alkaline Solution.

机构信息

Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, P. R. China.

Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou, Guangdong, 510275, P. R. China.

出版信息

Small. 2023 May;19(18):e2207086. doi: 10.1002/smll.202207086. Epub 2023 Jan 17.

Abstract

It is a good idea for efficient production of hydrogen to use ethanol oxidation reaction (EOR) in place of oxygen evolution reaction (OER) in water electrolysis process. Ni-based non-precious electrocatalysts are widely used in the conversion of ethanol to acetic acid. Here, different selenide heterostructures (NiCoSe, NiFeSe, and NiCuSe) are prepared in which Ni sites are regulated by transition metal. The valence state of Ni is NiCuSe < NiCoSe < NiFeSe in the three heterojunctions. NiCoSe shows the optimized charge distribution of Ni sites and outstanding catalytic activity. The effective modulations lead to optimized d-band center and facilitates both adsorption and desorption of reaction intermediates, which improves the kinetics of EOR. The results of this work prove that with appropriate designed catalyst it is possible to replace kinetically slow OER with faster EOR in water electrolysis to produce hydrogen.

摘要

利用乙醇氧化反应(EOR)替代水分解过程中的氧气析出反应(OER)来高效生产氢气是一个不错的想法。在乙醇到乙酸的转化中,镍基非贵金属电催化剂被广泛应用。在这里,我们制备了不同的硒化物异质结构(NiCoSe、NiFeSe 和 NiCuSe),其中 Ni 位由过渡金属调节。在这三个异质结中,Ni 的价态为 NiCuSe < NiCoSe < NiFeSe。NiCoSe 表现出优化的 Ni 位电荷分布和优异的催化活性。有效的调制导致优化的 d 带中心,有利于反应中间体的吸附和脱附,从而提高 EOR 的动力学。这项工作的结果证明,通过适当设计催化剂,可以在水分解中用更快的 EOR 替代动力学较慢的 OER 来生产氢气。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验