He Jinfeng, Tong Yun, Wang Zhe, Zhou Guorong, Ren Xuhui, Zhu Jiaye, Zhang Nan, Chen Lu, Chen Pengzuo
School of Chemistry and Chemical Engineering, Department of Chemical Engineering, Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China.
State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Sinopec Shanghai Research Institute of Petrochemical Technology Co., Ltd., Shanghai 201208, China.
Proc Natl Acad Sci U S A. 2024 Jul 23;121(30):e2405846121. doi: 10.1073/pnas.2405846121. Epub 2024 Jul 16.
High-entropy compounds have been emerging as promising candidates for electrolysis, yet their controllable electrosynthesis strategy remains a formidable challenge because of the ambiguous ionic interaction and codeposition mechanism. Herein, we report a oxygenates directionally induced electrodeposition strategy to construct high-entropy materials with amorphous features, on which the structural evolution from high-entropy phosphide to oxide is confirmed by introducing vanadate, thus realizing the simultaneous optimization of composition and structure. The representative P-CoNiMnWVO shows excellent bifunctional catalytic performance toward alkaline hydrogen evolution reaction and ethanol oxidation reaction (EOR), with small potentials of -168 mV and 1.38 V at 100 mA cm, respectively. In situ spectroscopy illustrates that the electrochemical reconstruction of P-CoNiMnWVO induces abundant Co-O species as the main catalytic active species for EOR and follows the conversion pathway of the C product. Theoretical calculations reveal the optimized electronic structure and adsorption free energy of reaction intermediates on P-CoNiMnWVO, thereby resulting in a facilitated kinetic process. A membrane-free electrolyzer delivers both high Faradaic efficiencies of acetate and H over 95% and superior stability at100 mA cm during 120 h electrolysis. In addition, the unique composition and structural advantages endow P-CoNiMnWVO with multifunctional catalytic activity and realize multipathway electrosynthesis of formate-coupled hydrogen production.
高熵化合物已成为电解领域有前景的候选材料,然而由于离子相互作用和共沉积机制尚不明确,其可控电合成策略仍是一项艰巨挑战。在此,我们报道一种含氧酸盐定向诱导电沉积策略,以构建具有非晶态特征的高熵材料,通过引入钒酸盐证实了从高熵磷化物到氧化物的结构演变,从而实现了组成和结构的同时优化。代表性的P-CoNiMnWVO对碱性析氢反应和乙醇氧化反应(EOR)表现出优异的双功能催化性能,在100 mA cm时的过电位分别为-168 mV和1.38 V。原位光谱表明,P-CoNiMnWVO的电化学重构诱导产生大量Co-O物种作为EOR的主要催化活性物种,并遵循C产物的转化途径。理论计算揭示了P-CoNiMnWVO上反应中间体的优化电子结构和吸附自由能,从而导致动力学过程的促进。一种无膜电解槽在120 h电解过程中,醋酸盐和氢气的法拉第效率均超过95%,并在100 mA cm时具有优异的稳定性。此外,独特的组成和结构优势赋予P-CoNiMnWVO多功能催化活性,并实现了甲酸盐耦合产氢的多途径电合成。