Suppr超能文献

验证 CORE-MD PMS 支持工具:一种从医疗器械故障通知中聚合信息以支持医疗器械上市后监测的新策略。

Validation of CORE-MD PMS Support Tool: A Novel Strategy for Aggregating Information from Notices of Failures to Support Medical Devices' Post-Market Surveillance.

机构信息

Department of Electronics, Information and Biomedical Engineering, Politecnico di Milano, Milan, Italy.

Department of Cardiology, University Hospital of Wales, Wales, CF14 4XW, UK.

出版信息

Ther Innov Regul Sci. 2023 May;57(3):589-602. doi: 10.1007/s43441-022-00493-y. Epub 2023 Jan 18.

Abstract

INTRODUCTION

The EU Medical Device Regulation 2017/745 defines new rules for the certification and post-market surveillance of medical devices (MD), including an additional review by Expert Panels of clinical evaluation data for high-risk MD if reports and alerts suggest possibly associated increased risks. Within the EU-funded CORE-MD project, our aim was to develop a tool to support such process in which web-accessible safety notices (SN) are automatically retrieved and aggregated based on their specific MD categories and the European Medical Device Nomenclature (EMDN) classification by applying an Entity Resolution (ER) approach to enrich data integrating different sources. The performance of such approach was tested through a pilot study on the Italian data.

METHODS

Information relevant to 7622 SN from 2009 to 2021 was retrieved from the Italian Ministry of Health website by Web scraping. For incomplete EMDN data (68%), the MD best match was searched within a list of about 1.5 M MD on the Italian market, using Natural Language Processing techniques and pairwise ER. The performance of this approach was tested on the 2440 SN (32%) already provided with the EMDN code as reference standard.

RESULTS

The implemented ER method was able to correctly assign the correct manufacturer to the MD in each SN in 99% of the cases. Moreover, the correct EMDN code at level 1 was assigned in 2382 SN (97.62%), at level 2 in 2366 SN (96.97%) and at level 3 in 2329 SN (95.45%).

CONCLUSION

The proposed approach was able to cope with the incompleteness of the publicly available data in the SN. In this way, grouping of SN relevant to a specific MD category/group/type could be used as possible sentinel for increased rates in reported serious incidents in high-risk MD.

摘要

简介

2017/745 年欧盟医疗器械法规为医疗器械的认证和上市后监测制定了新规则,包括如果报告和警报表明可能存在相关风险增加,则由专家小组对高风险医疗器械的临床评估数据进行额外审查。在欧盟资助的 CORE-MD 项目中,我们的目标是开发一种工具来支持这一过程,该工具可以根据特定的医疗器械类别和欧洲医疗器械命名法 (EMDN) 分类,通过应用实体解析 (ER) 方法自动检索和聚合可访问的安全通知 (SN),以丰富数据,整合不同来源。通过对意大利数据的试点研究测试了这种方法的性能。

方法

通过网络抓取从意大利卫生部网站上检索了 2009 年至 2021 年的 7622 份 SN 相关信息。对于 EMDN 数据不完整(68%)的情况,使用自然语言处理技术和两两 ER 在意大利市场上大约 150 万份医疗器械列表中搜索医疗器械的最佳匹配。该方法的性能在 2440 份(32%)已经提供 EMDN 代码作为参考标准的 SN 上进行了测试。

结果

实施的 ER 方法能够在 99%的情况下正确分配制造商的正确 MD 。此外,2382 份 SN(97.62%)正确分配了一级 EMDN 代码,2366 份 SN(96.97%)正确分配了二级 EMDN 代码,2329 份 SN(95.45%)正确分配了三级 EMDN 代码。

结论

所提出的方法能够处理 SN 中可用数据的不完整性。通过这种方式,可以将与特定医疗器械类别/组/类型相关的 SN 分组,作为高风险医疗器械报告严重事件率增加的潜在哨点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c95/10133046/99fa0db0a8ed/43441_2022_493_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验