Suppr超能文献

从共振超表面双向发射的光子对。

Photon pairs bi-directionally emitted from a resonant metasurface.

作者信息

Son Changjin, Sultanov Vitaliy, Santiago-Cruz Tomás, Anthur Aravind P, Zhang Haizhong, Paniagua-Dominguez Ramon, Krivitsky Leonid, Kuznetsov Arseniy I, Chekhova Maria V

机构信息

Max Planck Institute for the Science of Light, 91058 Erlangen, Germany.

Friedrich-Alexander Universität Erlangen-Nürnberg, 91058 Erlangen, Germany.

出版信息

Nanoscale. 2023 Feb 9;15(6):2567-2572. doi: 10.1039/d2nr05499j.

Abstract

Metasurfaces are artificially structured surfaces able to control the properties of light at subwavelength scales. While, initially, they have been proposed as means to control classical optical fields, they are now emerging as nanoscale sources of quantum light, in particular of entangled photons with versatile properties. Geometric resonances in metasurfaces have been recently used to engineer the frequency spectrum of entangled photons, but the emission directivity was so far less studied. Here, we generate photon pairs spontaneous parametric down conversion from a metasurface supporting a quasi-bound state in the continuum (BIC) leading to remarkable emission directivities. The pair generation rate is enhanced 67 times compared to the case of an unpatterned film of the same thickness and material. At the wavelength of the quasi-BIC resonance, photons are mostly emitted backwards, while their partners, spectrally detuned by only 8 nm, are emitted forwards. This behavior demonstrates fine spectral splitting of entangled photons and their bi-directional emission, never before observed in nanoscale sources. We expect this work to be a starting point for the efficient demultiplexing of photons in nanoscale quantum optics.

摘要

超表面是能够在亚波长尺度上控制光特性的人工结构化表面。虽然最初它们被提议作为控制经典光场的手段,但现在它们正作为量子光的纳米级源出现,特别是具有多种特性的纠缠光子源。超表面中的几何共振最近已被用于设计纠缠光子的频谱,但到目前为止对发射方向性的研究较少。在这里,我们通过一个支持连续体中准束缚态(BIC)的超表面产生自发参量下转换的光子对,从而实现显著的发射方向性。与相同厚度和材料的无图案薄膜相比,对产生率提高了67倍。在准BIC共振波长处,光子大多向后发射,而它们的伙伴,仅在光谱上失谐8纳米,则向前发射。这种行为展示了纠缠光子的精细光谱分裂及其双向发射,这在纳米级源中从未被观察到。我们预计这项工作将成为纳米级量子光学中光子高效解复用的起点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验