Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States.
Photonics Center, Boston University, Boston, Massachusetts 02215, United States.
Anal Chem. 2023 Jan 31;95(4):2398-2405. doi: 10.1021/acs.analchem.2c04474. Epub 2023 Jan 18.
Simultaneous identification and metabolic analysis of microbes with single-cell resolution and high throughput are necessary to answer the question of "who eats what, when, and where" in complex microbial communities. Here, we present a mid-infrared photothermal-fluorescence in situ hybridization (MIP-FISH) platform that enables direct bridging of genotype and phenotype. Through multiple improvements of MIP imaging, the sensitive detection of isotopically labeled compounds incorporated into proteins of individual bacterial cells became possible, while simultaneous detection of FISH labeling with rRNA-targeted probes enabled the identification of the analyzed cells. In proof-of-concept experiments, we showed that the clear spectral red shift in the protein amide I region due to incorporation of C atoms originating from C-labeled glucose can be exploited by MIP-FISH to discriminate and identify C-labeled bacterial cells within a complex human gut microbiome sample. The presented methods open new opportunities for single-cell structure-function analyses for microbiology.
为了解决复杂微生物群落中“谁在何时何地吃什么”的问题,需要以单细胞分辨率和高通量对微生物进行同时鉴定和代谢分析。在这里,我们提出了一种中红外光热荧光原位杂交(MIP-FISH)平台,该平台能够直接将基因型和表型联系起来。通过对 MIP 成像的多次改进,实现了对掺入单个细菌细胞蛋白质中的同位素标记化合物的灵敏检测,同时通过与 rRNA 靶向探针的 FISH 标记进行同时检测,实现了对被分析细胞的鉴定。在概念验证实验中,我们表明,由于掺入源自 C 标记葡萄糖的 C 原子,蛋白质酰胺 I 区域中明显的光谱红移可以被 MIP-FISH 利用,从而在复杂的人类肠道微生物组样本中区分和鉴定 C 标记的细菌细胞。所提出的方法为微生物学的单细胞结构功能分析开辟了新的机会。