Suppr超能文献

通过光瞳工程实现背景抑制的高通量中红外光热显微镜

Background-Suppressed High-Throughput Mid-Infrared Photothermal Microscopy via Pupil Engineering.

作者信息

Zong Haonan, Yurdakul Celalettin, Bai Yeran, Zhang Meng, Ünlü M Selim, Cheng Ji-Xin

机构信息

Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States.

Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States.

出版信息

ACS Photonics. 2021 Nov 17;8(11):3323-3336. doi: 10.1021/acsphotonics.1c01197. Epub 2021 Oct 14.

Abstract

Mid-infrared photothermal (MIP) microscopy has been a promising label-free chemical imaging technique for functional characterization of specimens owing to its enhanced spatial resolution and high specificity. Recently developed wide-field MIP imaging modalities have drastically improved speed and enabled high-throughput imaging of micron-scale subjects. However, the weakly scattered signal from subwavelength particles becomes indistinguishable from the shot-noise as a consequence of the strong background light, leading to limited sensitivity. Here, we demonstrate background-suppressed chemical fingerprinting at a single nanoparticle level by selectively attenuating the reflected light through pupil engineering in the collection path. Our technique provides over 3 orders of magnitude background suppression by quasi-darkfield illumination in the epi-configuration without sacrificing lateral resolution. We demonstrate 6-fold signal-to-background noise ratio improvement, allowing for simultaneous detection and discrimination of hundreds of nanoparticles across a field of view of 70 m × 70 m. A comprehensive theoretical framework for photothermal image formation is provided and experimentally validated with 300 and 500 nm PMMA beads. The versatility and utility of our technique are demonstrated via hyperspectral dark-field MIP imaging of and bacteria and MIP imaging of subcellular lipid droplets inside and cancer cells.

摘要

中红外光热(MIP)显微镜由于其增强的空间分辨率和高特异性,一直是一种用于标本功能表征的有前途的无标记化学成像技术。最近开发的宽场MIP成像模式极大地提高了速度,并实现了微米级对象的高通量成像。然而,由于背景光较强,亚波长粒子的弱散射信号与散粒噪声难以区分,导致灵敏度有限。在这里,我们通过在收集路径中通过光瞳工程选择性地衰减反射光,展示了在单个纳米粒子水平上的背景抑制化学指纹识别。我们的技术通过在落射配置下的准暗场照明提供了超过3个数量级的背景抑制,而不会牺牲横向分辨率。我们展示了6倍的信背噪比提高,允许在70μm×70μm的视场内同时检测和区分数百个纳米粒子。提供了一个用于光热图像形成的综合理论框架,并用300和500nm的聚甲基丙烯酸甲酯(PMMA)珠子进行了实验验证。我们的技术的通用性和实用性通过对大肠杆菌和金黄色葡萄球菌的高光谱暗场MIP成像以及对活细胞和癌细胞内亚细胞脂质滴的MIP成像得到了证明。

相似文献

1
Background-Suppressed High-Throughput Mid-Infrared Photothermal Microscopy via Pupil Engineering.
ACS Photonics. 2021 Nov 17;8(11):3323-3336. doi: 10.1021/acsphotonics.1c01197. Epub 2021 Oct 14.
2
Ultrafast Widefield Mid-Infrared Photothermal Heterodyne Imaging.
Anal Chem. 2022 Oct 18;94(41):14242-14250. doi: 10.1021/acs.analchem.2c02548. Epub 2022 Oct 5.
3
Label-free mid-infrared photothermal live-cell imaging beyond video rate.
Light Sci Appl. 2023 Jul 19;12(1):174. doi: 10.1038/s41377-023-01214-2.
4
Video-rate Mid-infrared Photothermal Imaging by Single Pulse Photothermal Detection per Pixel.
bioRxiv. 2023 Mar 1:2023.02.27.530116. doi: 10.1101/2023.02.27.530116.
5
Depth-resolved mid-infrared photothermal imaging of living cells and organisms with submicrometer spatial resolution.
Sci Adv. 2016 Sep 28;2(9):e1600521. doi: 10.1126/sciadv.1600521. eCollection 2016 Sep.
6
Mid-Infrared Photothermal Imaging of Active Pharmaceutical Ingredients at Submicrometer Spatial Resolution.
Anal Chem. 2017 May 2;89(9):4863-4867. doi: 10.1021/acs.analchem.6b04638. Epub 2017 Apr 18.
7
Video-rate mid-infrared photothermal imaging by single-pulse photothermal detection per pixel.
Sci Adv. 2023 Jun 16;9(24):eadg8814. doi: 10.1126/sciadv.adg8814. Epub 2023 Jun 14.
8
High-sensitivity hyperspectral vibrational imaging of heart tissues by mid-infrared photothermal microscopy.
Anal Sci. 2022 Dec;38(12):1497-1503. doi: 10.1007/s44211-022-00182-8. Epub 2022 Sep 7.
9
Nanosecond-resolution photothermal dynamic imaging via MHZ digitization and match filtering.
Nat Commun. 2021 Dec 7;12(1):7097. doi: 10.1038/s41467-021-27362-w.
10
3D Chemical Imaging by Fluorescence-detected Mid-Infrared Photothermal Fourier Light Field Microscopy.
Chem Biomed Imaging. 2023 Mar 20;1(3):260-267. doi: 10.1021/cbmi.3c00022. eCollection 2023 Jun 26.

引用本文的文献

2
Structural diversity of Alzheimer-related protein aggregations revealed using photothermal ratio-metric micro-spectroscopy.
Biomed Opt Express. 2024 Nov 11;15(12):6768-6782. doi: 10.1364/BOE.537461. eCollection 2024 Dec 1.
3
Overtone photothermal microscopy for high-resolution and high-sensitivity vibrational imaging.
Nat Commun. 2024 Jun 25;15(1):5374. doi: 10.1038/s41467-024-49691-2.
4
Structural characterization of amyloid aggregates with spatially resolved infrared spectroscopy.
Methods Enzymol. 2024;697:113-150. doi: 10.1016/bs.mie.2024.02.013. Epub 2024 Apr 5.
5
Single-cell mapping of lipid metabolites using an infrared probe in human-derived model systems.
Nat Commun. 2024 Jan 8;15(1):350. doi: 10.1038/s41467-023-44675-0.
6
Time-Resolved Mid-Infrared Photothermal Microscopy for Imaging Water-Embedded Axon Bundles.
Anal Chem. 2023 Nov 14;95(45):16514-16521. doi: 10.1021/acs.analchem.3c02352. Epub 2023 Oct 25.
8
Thermal transport across membranes and the Kapitza length from photothermal microscopy.
J Biol Phys. 2023 Sep;49(3):365-381. doi: 10.1007/s10867-023-09636-0. Epub 2023 Jul 21.
9
Label-free mid-infrared photothermal live-cell imaging beyond video rate.
Light Sci Appl. 2023 Jul 19;12(1):174. doi: 10.1038/s41377-023-01214-2.
10
Far-field super-resolution chemical microscopy.
Light Sci Appl. 2023 Jun 5;12(1):137. doi: 10.1038/s41377-023-01182-7.

本文引用的文献

1
Vibrational Spectroscopic Detection of a Single Virus by Mid-Infrared Photothermal Microscopy.
Anal Chem. 2021 Mar 2;93(8):4100-4107. doi: 10.1021/acs.analchem.0c05333. Epub 2021 Feb 17.
2
Adaptive dynamic range shift (ADRIFT) quantitative phase imaging.
Light Sci Appl. 2021 Jan 1;10(1):1. doi: 10.1038/s41377-020-00435-z.
4
Simultaneous Optical Photothermal Infrared (O-PTIR) and Raman Spectroscopy of Submicrometer Atmospheric Particles.
Anal Chem. 2020 Jul 21;92(14):9932-9939. doi: 10.1021/acs.analchem.0c01495. Epub 2020 Jun 26.
5
Bulk to Nanometer-Scale Infrared Spectroscopy of Pharmaceutical Dry Powder Aerosols.
Anal Chem. 2020 Jun 16;92(12):8323-8332. doi: 10.1021/acs.analchem.0c00729. Epub 2020 May 22.
6
Super-Resolution Infrared Imaging of Polymorphic Amyloid Aggregates Directly in Neurons.
Adv Sci (Weinh). 2020 Feb 7;7(6):1903004. doi: 10.1002/advs.201903004. eCollection 2020 Mar.
7
Approaches to mid-infrared, super-resolution imaging and spectroscopy.
Phys Chem Chem Phys. 2020 Feb 26;22(8):4313-4325. doi: 10.1039/c9cp05815j.
8
All-digital histopathology by infrared-optical hybrid microscopy.
Proc Natl Acad Sci U S A. 2020 Feb 18;117(7):3388-3396. doi: 10.1073/pnas.1912400117. Epub 2020 Feb 3.
9
High-Throughput, High-Resolution Interferometric Light Microscopy of Biological Nanoparticles.
ACS Nano. 2020 Feb 25;14(2):2002-2013. doi: 10.1021/acsnano.9b08512. Epub 2020 Feb 12.
10
Bond-selective transient phase imaging via sensing of the infrared photothermal effect.
Light Sci Appl. 2019 Dec 11;8:116. doi: 10.1038/s41377-019-0224-0. eCollection 2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验