Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA.
Photonics Center, Boston University, Boston, MA, 02215, USA.
Nat Commun. 2021 Dec 7;12(1):7097. doi: 10.1038/s41467-021-27362-w.
Photothermal microscopy has enabled highly sensitive label-free imaging of absorbers, from metallic nanoparticles to chemical bonds. Photothermal signals are conventionally detected via modulation of excitation beam and demodulation of probe beam using lock-in amplifier. While convenient, the wealth of thermal dynamics is not revealed. Here, we present a lock-in free, mid-infrared photothermal dynamic imaging (PDI) system by MHz digitization and match filtering at harmonics of modulation frequency. Thermal-dynamic information is acquired at nanosecond resolution within single pulse excitation. Our method not only increases the imaging speed by two orders of magnitude but also obtains four-fold enhancement of signal-to-noise ratio over lock-in counterpart, enabling high-throughput metabolism analysis at single-cell level. Moreover, by harnessing the thermal decay difference between water and biomolecules, water background is effectively separated in mid-infrared PDI of living cells. This ability to nondestructively probe chemically specific photothermal dynamics offers a valuable tool to characterize biological and material specimens.
光热显微镜使人们能够对吸收体进行高灵敏度的无标记成像,从金属纳米粒子到化学键。光热信号通常通过使用锁相放大器调制激发光束和解调探针光束来检测。虽然方便,但没有揭示出丰富的热动力学信息。在这里,我们通过兆赫兹数字化和调制频率的谐波匹配滤波,展示了一种无锁定、中红外光热动态成像(PDI)系统。在单脉冲激发下,以纳秒分辨率获取热动力学信息。我们的方法不仅将成像速度提高了两个数量级,而且与锁相放大器相比,还将信噪比提高了四倍,从而能够在单细胞水平上进行高通量代谢分析。此外,通过利用水和生物分子之间的热衰减差异,在活细胞的中红外 PDI 中可以有效地分离水背景。这种能够非破坏性地探测化学特异性光热动力学的能力为表征生物和材料样本提供了一种有价值的工具。