Elaiw A M, Shflot A S, Hobiny A D
Department of Mathematics, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia.
Department of Mathematics, Faculty of Science, Al-Azhar University, Assiut Branch, Assiut, Egypt.
Math Biosci Eng. 2022 Aug 31;19(12):12693-12729. doi: 10.3934/mbe.2022593.
This paper formulates and analyzes a general delayed mathematical model which describe the within-host dynamics of Human T-cell lymphotropic virus class I (HTLV-I) under the effect Cytotoxic T Lymphocyte (CTL) immunity. The models consist of four components: uninfected CD$ 4^{+} $T cells, latently infected cells, actively infected cells and CTLs. The mitotic division of actively infected cells are modeled. We consider general nonlinear functions for the generation, proliferation and clearance rates for all types of cells. The incidence rate of infection is also modeled by a general nonlinear function. These general functions are assumed to be satisfy some suitable conditions. To account for series of events in the infection process and activation of latently infected cells, we introduce two intracellular distributed-time delays into the models: (ⅰ) delay in the formation of latently infected cells, (ⅱ) delay in the activation of latently infected cells. We determine a bounded domain for the system's solutions. We calculate two threshold numbers, the basic reproductive number $ R_{0} $ and the CTL immunity stimulation number $ R_{1} $. We determine the conditions for the existence and global stability of the equilibrium points. We study the global stability of all equilibrium points using Lyapunov method. We prove the following: (a) if $ R_{0}\leq 1 $, then the infection-free equilibrium point is globally asymptotically stable (GAS), (b) if $ R_{1}\leq 1 < R_{0} $, then the infected equilibrium point without CTL immunity is GAS, (c) if $ R_{1} > 1 $, then the infected equilibrium point with CTL immunity is GAS. We present numerical simulations for the system by choosing special shapes of the general functions. The effects of proliferation of CTLs and time delay on the HTLV-I progression is investigated. We noted that the CTL immunity does not play the role in clearing the HTLV-I from the body, but it has an important role in controlling and suppressing the viral infection. On the other hand, we observed that, increasing the time delay intervals can have similar influences as drug therapies in removing viruses from the body. This gives some impression to develop two types of treatments, the first type aims to extend the intracellular delay periods, while the second type aims to activate and stimulate the CTL immune response.
本文建立并分析了一个一般的延迟数学模型,该模型描述了在细胞毒性T淋巴细胞(CTL)免疫作用下人类T细胞嗜淋巴细胞病毒I型(HTLV-I)在宿主体内的动力学。这些模型由四个部分组成:未感染的CD4⁺T细胞、潜伏感染细胞、活跃感染细胞和CTL。对活跃感染细胞的有丝分裂进行了建模。我们考虑了所有类型细胞的产生、增殖和清除率的一般非线性函数。感染发生率也由一个一般非线性函数建模。假设这些一般函数满足一些合适的条件。为了考虑感染过程中的一系列事件以及潜伏感染细胞的激活,我们在模型中引入了两个细胞内分布时滞:(ⅰ)潜伏感染细胞形成的时滞,(ⅱ)潜伏感染细胞激活的时滞。我们确定了系统解的一个有界域。我们计算了两个阈值数,基本再生数(R_0)和CTL免疫刺激数(R_1)。我们确定了平衡点存在和全局稳定的条件。我们使用李雅普诺夫方法研究了所有平衡点的全局稳定性。我们证明了以下几点:(a)如果(R_0\leq1),那么无感染平衡点是全局渐近稳定的(GAS);(b)如果(R_1\leq1<R_0),那么没有CTL免疫的感染平衡点是GAS;(c)如果(R_1>1),那么有CTL免疫的感染平衡点是GAS。我们通过选择一般函数的特殊形式对系统进行了数值模拟。研究了CTL增殖和时滞对HTLV-I进展的影响。我们注意到CTL免疫在从体内清除HTLV-I方面不起作用,但它在控制和抑制病毒感染方面具有重要作用。另一方面,我们观察到,增加时滞间隔在从体内清除病毒方面可以产生与药物治疗类似的影响。这为开发两种类型的治疗方法提供了一些思路,第一种类型旨在延长细胞内时滞期,而第二种类型旨在激活和刺激CTL免疫反应。