Suppr超能文献

On a two-species competitive predator-prey system with density-dependent diffusion.

作者信息

Zheng Pan

机构信息

College of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China.

Department of Mathematics, The Chinese University of Hong Kong, Shatin, Hong Kong 999077, China.

出版信息

Math Biosci Eng. 2022 Sep 14;19(12):13421-13457. doi: 10.3934/mbe.2022628.

Abstract

This paper deals with a two-species competitive predator-prey system with density-dependent diffusion, i.e., \begin{eqnarray*}\label{1a} \left{ \begin{split}{}&u_t=\Delta (d_{1}(w)u)+\gamma_{1}uF_{1}(w)-uh_{1}(u)-\beta_{1}uv,&(x,t)\in \Omega\times (0,\infty),\&v_t=\Delta (d_{2}(w)v)+\gamma_{2}vF_{2}(w)-vh_{2}(v)-\beta_{2}uv,&(x,t)\in \Omega\times (0,\infty),\&w_t=D\Delta w-uF_{1}(w)-vF_{2}(w)+f(w),&(x,t)\in \Omega\times (0,\infty), \end{split} \right. \end{eqnarray*} under homogeneous Neumann boundary conditions in a smooth bounded domain $\Omega\subset \mathbb{R}^{2}$, with the nonnegative initial data $\left( {u_{0}, v_{0}, w_{0}} \right) \in (W^{1,p}(\Omega))^{3}$ with $p>2$, where the parameters $D,\gamma_{1},\gamma_{2},\beta_{1},\beta_{2}>0$, $d_{1}(w)$ and $d_{2}(w)$ are density-dependent diffusion functions, $F_{1}(w)$ and $F_{2}(w)$ are commonly called the functional response functions accounting for the intake rate of predators as the functions of prey density, $h_{1}(u)$ and $h_{2}(v)$ represent the mortality rates of predators, and $f(w)$ stands for the growth function of the prey. First, we rigorously prove the global boundedness of classical solutions for the above general model provided that the parameters satisfy some suitable conditions by means of $L^{p}$-estimate techniques. Moreover, in some particular cases, we establish the asymptotic stabilization and precise convergence rates of globally bounded solutions under different conditions on the parameters by constructing some appropriate Lyapunov functionals. Our results not only extend the previous ones, but also involve some new conclusions.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验