Suppr超能文献

具有加速和 logistic 源的趋化模型中的稳定性和模式形成。

Stabilization and pattern formation in chemotaxis models with acceleration and logistic source.

机构信息

College of Mathematics and Statistics, Chongqing University, Chongqing 401331, China.

Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.

出版信息

Math Biosci Eng. 2023 Jan;20(2):2011-2038. doi: 10.3934/mbe.2023093. Epub 2022 Nov 11.

Abstract

We consider the following chemotaxis-growth system with an acceleration assumption, \begin{align*} \begin{cases} u_t= \Delta u -\nabla \cdot\left(u \bw \right)+\gamma\xkh{u-u^\alpha}, & x\in\Omega,\ t>0,\ v_t=\Delta v- v+u, & x\in\Omega,\ t>0,\ \bw_t= \Delta \bw -\bw +\chi\nabla v, & x\in\Omega,\ t>0, \end{cases} \end{align*} under the homogeneous Neumann boundary condition for $u,v$ and the homogeneous Dirichlet boundary condition for $\bw$ in a smooth bounded domain $\Omega\subset\R^{n}$ ($n\geq1$) with given parameters $\chi>0$, $\gamma\geq0$ and $\alpha>1$. It is proved that for reasonable initial data with either $n\leq3$, $\gamma\geq0$, $\alpha>1$ or $n\geq4,\ \gamma>0,\ \alpha>\frac12+\frac n4$, the system admits global bounded solutions, which significantly differs from the classical chemotaxis model that may have blow-up solutions in two and three dimensions. For given $\gamma$ and $\alpha$, the obtained global bounded solutions are shown to convergence exponentially to the spatially homogeneous steady state $(m,m,\mathbf 0$) in the large time limit for appropriately small $\chi$, where $m=\frac1{|\Omega|}\jfo u_0(x)$ if $\gamma=0$ and $m=1$ if $\gamma>0$. Outside the stable parameter regime, we conduct linear analysis to specify possible patterning regimes. In weakly nonlinear parameter regimes, with a standard perturbation expansion approach, we show that the above asymmetric model can generate pitchfork bifurcations which occur generically in symmetric systems. Moreover, our numerical simulations demonstrate that the model can generate rich aggregation patterns, including stationary, single merging aggregation, merging and emerging chaotic, and spatially inhomogeneous time-periodic. Some open questions for further research are discussed.

摘要

我们考虑以下具有加速度假设的趋化生长系统

\begin{align*} \begin{cases} u_t= \Delta u -\nabla \cdot\left(u \bw \right)+\gamma\xkh{u-u^\alpha}, & x\in\Omega,\ t>0,\ v_t=\Delta v- v+u, & x\in\Omega,\ t>0,\ \bw_t= \Delta \bw -\bw +\chi\nabla v, & x\in\Omega,\ t>0, \end{cases} \end{align*} 其中$u,v$满足齐次 Neumann 边界条件,$\bw$满足齐次 Dirichlet 边界条件,在光滑有界区域$\Omega\subset\R^{n}$($n\geq1$)中,参数为$\chi>0$,$\gamma\geq0$和$\alpha>1$。证明对于合理的初始数据,要么$n\leq3$,$\gamma\geq0$,$\alpha>1$,要么$n\geq4$,$\gamma>0$,$\alpha>\frac12+\frac n4$,系统存在全局有界解,这与经典趋化模型有很大的不同,经典趋化模型在二维和三维空间中可能存在爆炸解。对于给定的$\gamma$和$\alpha$,当$\chi$足够小时,在大时间极限下,所得到的全局有界解会指数收敛到空间均匀的稳定态$(m,m,\mathbf 0$),其中如果$\gamma=0$,则$m=\frac1{|\Omega|}\jfo u_0(x)$,如果$\gamma>0$,则$m=1$。在稳定参数区域之外,我们进行线性分析以确定可能的模式形成区域。在弱非线性参数区域中,通过标准的微扰展开方法,我们证明上述不对称模型可以产生叉形分岔,这在对称系统中通常会发生。此外,我们的数值模拟表明,该模型可以产生丰富的聚集模式,包括静止、单个合并聚集、合并和出现混沌以及空间不均匀的时周期。讨论了进一步研究的一些开放性问题。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验