Bang Seunghwan, Snoeckx Ramses, Cha Min Suk
CCRC, Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal23955, Saudi Arabia.
J Phys Chem A. 2023 Feb 9;127(5):1271-1282. doi: 10.1021/acs.jpca.2c06919. Epub 2023 Jan 19.
Ammonia is considered as one of the promising hydrogen carriers toward a sustainable world. Plasma assisted decomposition of NH could provide cost- and energy-effective, low-temperature, on-demand (partial) cracking of NH into H. Here, we presented a temperature-dependent plasma-chemical kinetic study to investigate the role of both electron-induced reactions and thermally induced reactions on the decomposition of NH. We employed a plasma-chemical kinetic model (KAUSTKin), developed a plasma-chemical reaction mechanism for the numerical analysis, and introduced a temperature-controlled dielectric barrier discharge reactor for the experimental investigation using 1 mol % NH diluted in N. As a result, we observed the plasma significantly lowered the cracking temperature and found that the plasma-chemical mechanism should be further improved to better predict the experiment. The commonly used rates for the key NH pyrolysis reaction (NH + M ↔ NH + H + M) significantly overpredicted the recombination rate at temperatures below 600 K. Furthermore, the other identified shortcomings in the available data are (i) thermal hydrazine chemistry, (ii) electron-scattering cross-section data of NH, (iii) electron-impact dissociation of N, and (iv) dissociative quenching of excited states of N. We believe that the present study will spark fundamental interest to address these shortcomings and contribute to technical advancements in plasma assisted NH cracking technology.
氨被认为是迈向可持续世界的有前景的氢载体之一。等离子体辅助氨分解可以提供具有成本效益和能源效率的低温按需(部分)将氨裂解为氢的方法。在此,我们进行了一项温度依赖性等离子体化学动力学研究,以研究电子诱导反应和热诱导反应在氨分解中的作用。我们采用了一个等离子体化学动力学模型(KAUSTKin),开发了一种用于数值分析的等离子体化学反应机理,并引入了一个温度控制的介质阻挡放电反应器,用于使用在氮气中稀释1 mol%的氨进行实验研究。结果,我们观察到等离子体显著降低了裂解温度,并发现等离子体化学机理应进一步改进以更好地预测实验结果。关键氨热解反应(NH₃ + M ↔ NH₂ + H + M)常用的速率在温度低于600 K时显著高估了复合速率。此外,现有数据中其他已确定的缺点包括:(i)热肼化学,(ii)氨的电子散射截面数据,(iii)氮的电子碰撞解离,以及(iv)氮激发态的解离猝灭。我们相信本研究将激发人们对解决这些缺点的基本兴趣,并有助于等离子体辅助氨裂解技术的技术进步。