Suppr超能文献

基于等离子体的CO转化的温度依赖动力学:电子驱动化学与热驱动化学的相互作用

Temperature-Dependent Kinetics of Plasma-Based CO Conversion: Interplay of Electron-Driven and Thermal-Driven Chemistry.

作者信息

Mohanan Aswath, Snoeckx Ramses, Cha Min Suk

机构信息

CCRC, Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia.

Laboratory for Advanced Fibers, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland.

出版信息

ChemSusChem. 2025 Mar 15;18(6):e202401526. doi: 10.1002/cssc.202401526. Epub 2024 Nov 20.

Abstract

The transformation of CO into chemical building blocks for various industries is considered a key technology in a net-zero energy future. To realize this, plasma discharges are one of the most promising approaches thanks to their electron-driven reactions and high operational flexibility. Most studies focused on room-temperature and vibrationally-excited discharges, however, lately, the importance of thermal reactions is considered. Therefore, we developed a temperature-dependent plasma-chemical reaction mechanism to investigate the temperature dependence of plasma-based CO conversion. Here, we present the various effects of thermally-driven reactions on the CO conversion as a function of the gas temperature and specific energy input. Our analysis pinpointed the key reactions controlling the plasma-based CO conversion, shifting from an electron-driven to a thermal-driven regime. Additionally, we used the mechanism to verify the theoretical upper boundary of the process' energy efficiency, and discussed how our findings could lead to the further development and optimization of plasma discharges for efficient CO conversion in the future.

摘要

将一氧化碳转化为适用于各种行业的化学原料,被视为实现净零能源未来的一项关键技术。要实现这一点,等离子体放电因其电子驱动反应和高度的操作灵活性,是最具前景的方法之一。然而,大多数研究集中在室温及振动激发放电上,近来,热反应的重要性也受到了关注。因此,我们开发了一种与温度相关的等离子体化学反应机制,以研究基于等离子体的一氧化碳转化的温度依赖性。在此,我们展示了热驱动反应对一氧化碳转化的各种影响,这些影响是气体温度和比能量输入的函数。我们的分析确定了控制基于等离子体的一氧化碳转化的关键反应,该转化正从电子驱动模式转变为热驱动模式。此外,我们利用该机制验证了该过程能量效率的理论上限,并讨论了我们的研究结果如何能够在未来推动用于高效一氧化碳转化的等离子体放电的进一步发展和优化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4517/11912113/890d7adde4f2/CSSC-18-e202401526-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验