Suppr超能文献

蛋黄壳结构 Sb@空位@二维石墨炔纳米盒用于高速长循环寿命钠离子电池。

Yolk-Shell Sb@Void@Graphdiyne Nanoboxes for High-Rate and Long Cycle Life Sodium-Ion Batteries.

机构信息

Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China.

Sichuan Research Center of New Materials, Institute of Chemical Materials, China Academy of Engineering Physics, Chengdu610200, P. R. China.

出版信息

ACS Nano. 2023 Feb 14;17(3):2431-2439. doi: 10.1021/acsnano.2c09679. Epub 2023 Jan 19.

Abstract

Antimony (Sb) has been pursued as a promising anode material for sodium-ion batteries (SIBs). However, it suffers from severe volume expansion during the sodiation-desodiation process. Encapsulating Sb into a carbon matrix can effectively buffer the volume change of Sb. However, the sluggish Na diffusion kinetics in traditional carbon shells is still a bottleneck for achieving high-rate performance in Sb/C composite materials. Here we design and synthesize a yolk-shell Sb@Void@graphdiyne (GDY) nanobox (Sb@Void@GDY NB) anode for high-rate and long cycle life SIBs. The intrinsic in-plane cavities in GDY shells offer three-dimensional Na transporting channels, enabling fast Na diffusion through the GDY shells. Electrochemical kinetics analyses show that the Sb@Void@GDY NBs exhibit faster Na transport kinetics than traditional Sb@C NBs. transmission electron microscopy analysis reveals that the hollow structure and the void space between Sb and GDY successfully accommodate the volume change of Sb during cycling, and the plastic GDY shell maintains the structural integrity of NBs. Benefiting from the above structural merits, the Sb@Void@GDY NBs exhibit excellent rate capability and extraordinary cycling stability.

摘要

锑 (Sb) 一直被视为钠离子电池 (SIBs) 有前途的阳极材料。然而,它在钠化-去钠化过程中会遭受严重的体积膨胀。将 Sb 封装在碳基质中可以有效地缓冲 Sb 的体积变化。然而,传统碳壳中 Na 扩散动力学的缓慢仍然是 Sb/C 复合材料实现高倍率性能的瓶颈。在这里,我们设计并合成了一种蛋黄壳 Sb@Void@graphdiyne (GDY) 纳米盒 (Sb@Void@GDY NB) 用于高倍率和长循环寿命 SIBs 的阳极。GDY 壳中的本征面内腔提供了三维 Na 输运通道,使 Na 能够通过 GDY 壳快速扩散。电化学动力学分析表明,Sb@Void@GDY NBs 表现出比传统 Sb@C NBs 更快的 Na 传输动力学。透射电子显微镜分析表明,空心结构和 Sb 与 GDY 之间的空隙空间成功地容纳了 Sb 在循环过程中的体积变化,而塑性 GDY 壳保持了 NBs 的结构完整性。得益于上述结构优点,Sb@Void@GDY NBs 表现出优异的倍率性能和非凡的循环稳定性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验