Physical Science Division, Pacific Northwest National Laboratory, Richland, Washington99352, United States.
Department of Chemistry, University of California, Berkeley, California94720, United States.
J Phys Chem Lett. 2023 Feb 2;14(4):870-878. doi: 10.1021/acs.jpclett.2c03460. Epub 2023 Jan 19.
A primary means to generate hydrated electrons in laboratory experiments is excitation to the charge-transfer-to-solvent (CTTS) state of a solute such as I(aq), but this initial step in the genesis of (aq) has never been simulated directly using molecular dynamics. We report the first such simulations, combining ground- and excited-state simulations of I(aq) with a detailed analysis of fluctuations in the Coulomb potential experienced by the nascent solvated electron. What emerges is a two-step picture of the evolution of (aq) starting from the CTTS state: I(aq) + → I(aq) → I(aq) + (aq). Notably, the equilibrated ground state of (aq) evolves from I(aq) without any nonadiabatic transitions, simply as a result of solvent reorganization. The methodology used here should be applicable to other photochemical electron transfer processes in solution, an important class of problems directly relevant to photocatalysis and energy transfer.
在实验室实验中,产生水合电子的主要方法是将溶质(例如 I(aq))激发到电荷转移到溶剂(CTTS)状态,但在(aq)的产生过程中,这一初始步骤从未使用分子动力学直接模拟过。我们报告了首次此类模拟,将 I(aq)的基态和激发态模拟与对初生溶剂化电子经历的库仑势的波动的详细分析相结合。由此产生的是从 CTTS 状态开始的(aq)演变的两步骤图像:I(aq) + → I(aq) → I(aq) + (aq)。值得注意的是,(aq)的平衡基态无需任何非绝热跃迁即可从 I(aq)演变而来,这仅仅是溶剂重组的结果。此处使用的方法应该适用于溶液中的其他光化学反应电子转移过程,这是与光催化和能量转移直接相关的一类重要问题。