Suppr超能文献

基于等级的预试验后试验随机试验设计和分析方法,及其在 COVID-19 等级量表数据中的应用。

A rank-based approach to design and analysis of pretest-posttest randomized trials, with application to COVID-19 ordinal scale data.

机构信息

Department of Epidemiology and Biostatistics, Western University, London, Canada; Robarts Research Institute, Western University, London, Canada.

Department of Epidemiology and Biostatistics, Western University, London, Canada.

出版信息

Contemp Clin Trials. 2023 Mar;126:107085. doi: 10.1016/j.cct.2023.107085. Epub 2023 Jan 16.

Abstract

Randomized controlled trials with a pretest-posttest design frequently yield ordered categorical outcome data. Focusing on the estimation of the win probability that a treated participant would have a better score than (or win over) a control participant, we developed methods for analysis and sample size planning for such trials. We exploited the analysis of covariance framework with the dependent variable being individual participants' win fractions at posttest and the covariate being the win fractions at pretest. The win fractions were obtained using the mid-ranks of the ordinal data. Simulation evaluation based on a recent randomized trial on COVID-19 suggests that the methods perform very well. A sample SAS code for data analysis is presented.

摘要

随机对照试验常产生有序分类结局数据,具有前测-后测设计。本文关注于估计治疗组参与者比对照组参与者获得更好(或更高)评分的胜算概率,我们针对此类试验开发了分析和样本量规划方法。我们利用协方差分析框架,因变量为后测时个体参与者的胜算分数,协变量为前测时的胜算分数。胜算分数通过有序数据的中位数获得。基于最近一项关于 COVID-19 的随机试验的模拟评估表明,这些方法表现非常出色。本文提供了用于数据分析的 SAS 代码示例。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验