Department of Epidemiology and Biostatistics, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada.
Robarts Research Institute, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada.
Stat Med. 2024 Dec 10;43(28):5366-5379. doi: 10.1002/sim.10247. Epub 2024 Oct 17.
Multiple primary endpoints are commonly used in randomized controlled trials to assess treatment effects. When the endpoints are measured on different scales, the O'Brien rank-sum test or the Wei-Lachin test for stochastic ordering may be used for hypothesis testing. However, the O'Brien-Wei-Lachin (OWL) approach is unable to handle missing data and adjust for baseline measurements. We present a nonparametric approach for data analysis that encompasses the OWL approach as a special case. Our approach is based on quantifying an endpoint-specific treatment effect using the probability that a participant in the treatment group has a better score than (or a win over) a participant in the control group. The average of the endpoint-specific win probabilities (WinPs), termed the global win probability (gWinP), is used to quantify the global treatment effect, with the null hypothesis gWinP = 0.50. Our approach involves converting the data for each endpoint to endpoint-specific win fractions, and modeling the win fractions using multivariate linear mixed models to obtain estimates of the endpoint-specific WinPs and the associated variance-covariance matrix. Focusing on confidence interval estimation for the gWinP, we derive sample size formulas for clinical trial design. Simulation results demonstrate that our approach performed well in terms of bias, interval coverage percentage, and assurance of achieving a pre-specified precision for the gWinP. Illustrative code for implementing the methods using SAS PROC RANK and PROC MIXED is provided.
多主要终点通常用于随机对照试验中以评估治疗效果。当终点在不同的尺度上测量时,可以使用 O'Brien 秩和检验或 Wei-Lachin 检验来检验随机序。然而,OWL 方法无法处理缺失数据和调整基线测量。我们提出了一种非参数数据分析方法,该方法包含 OWL 方法作为一种特例。我们的方法基于使用治疗组中的参与者比对照组中的参与者具有更好的分数(或获胜)的概率来量化特定于终点的治疗效果。将特定于终点的获胜概率(WinP)的平均值(称为全局获胜概率(gWinP))用于量化全局治疗效果,零假设为 gWinP=0.50。我们的方法涉及将每个终点的数据转换为特定于终点的获胜分数,并使用多元线性混合模型对获胜分数进行建模,以获得特定于终点的 WinP 的估计值及其相关的方差-协方差矩阵。我们专注于 gWinP 的置信区间估计,为临床试验设计推导了样本量公式。模拟结果表明,我们的方法在偏差、区间覆盖百分比以及确保达到 gWinP 预定精度方面表现良好。提供了使用 SAS PROC RANK 和 PROC MIXED 实现方法的说明性代码。