Aloui Tanouir, Serpa Rafael Bento, Abboud Nabil, Horvath Kathleen L, Keogh Justin, Parker Charles B, Stern Jennifer C, Denton M Bonner, Sartorelli Maria Luisa, Glass Jeffrey T, Gehm Michael E, Amsden Jason J
Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina, USA.
Department of Civil and Environmental Engineering, Duke University, Durham, North Carolina, USA.
Rapid Commun Mass Spectrom. 2025 May;39 Suppl 1:e9477. doi: 10.1002/rcm.9477. Epub 2023 Feb 9.
Higher resolution in fieldable mass spectrometers (MS) is desirable in space flight applications to enable resolving isobaric interferences at m/z < 60 u. Resolution in portable cycloidal MS coupled with array detectors could be improved by reducing the slit width and/or by reducing the width of the detector pixels. However, these solutions are expensive and can result in reduced sensitivity. In this paper, we demonstrate high-resolution spectral reconstruction in a cycloidal coded aperture miniature mass spectrometer (C-CAMMS) without changing the slit or detector pixel sizes using a class of signal processing techniques called super-resolution (SR).
We developed an SR reconstruction algorithm using a sampling SR approach whereby a set of spatially shifted low-resolution measurements are reconstructed into a higher-resolution spectrum. This algorithm was applied to experimental data collected using the C-CAMMS prototype. It was then applied to synthetic data with additive noise, system response variation, and spatial shift nonuniformity to investigate the source of reconstruction artifacts in the experimental data.
Experimental results using two ½ pixel shifted spectra resulted in a resolution of ¾ pixel full width at half maximum (FWHM) at m/z = 28 u. This resolution is equivalent to 0.013 u, six times better than the resolution previously published at m/z = 28 for N using C-CAMMS. However, the reconstructed spectra exhibited some artifacts. The results of the synthetic data study indicate that the artifacts are most likely caused by the system response variation.
This paper demonstrates super-resolution spectral reconstruction in C-CAMMS without changing the slit or detector pixel sizes using a sampling SR approach. With improvements, this technique could be used to resolve isobaric interferences in a portable cycloidal MS for space flight applications.
在航天应用中,希望可现场使用的质谱仪(MS)具有更高的分辨率,以便能够分辨质荷比(m/z)<60 u的同量异位素干扰。通过减小狭缝宽度和/或减小探测器像素宽度,可以提高与阵列探测器耦合的便携式摆线质谱仪的分辨率。然而,这些解决方案成本高昂,并且可能导致灵敏度降低。在本文中,我们展示了在摆线编码孔径微型质谱仪(C-CAMMS)中,使用一类称为超分辨率(SR)的信号处理技术,在不改变狭缝或探测器像素尺寸的情况下进行高分辨率光谱重建。
我们使用采样SR方法开发了一种SR重建算法,通过该算法,一组空间移位的低分辨率测量值被重建为更高分辨率的光谱。该算法应用于使用C-CAMMS原型收集的实验数据。然后将其应用于具有加性噪声、系统响应变化和空间移位不均匀性的合成数据,以研究实验数据中重建伪影的来源。
使用两个半像素移位光谱的实验结果在m/z = 28 u处产生了半高宽(FWHM)为四分之三像素的分辨率。该分辨率相当于0.013 u,比之前使用C-CAMMS在m/z = 28时公布的分辨率高六倍。然而,重建光谱表现出一些伪影。合成数据研究结果表明,这些伪影很可能是由系统响应变化引起的。
本文展示了在C-CAMMS中使用采样SR方法在不改变狭缝或探测器像素尺寸的情况下进行超分辨率光谱重建。经过改进,该技术可用于解决便携式摆线质谱仪在航天应用中的同量异位素干扰问题。