Suppr超能文献

采用电子束自热技术测量悬浮态二硫化钼的热导率和界面热阻。

Measuring the thermal conductivity and interfacial thermal resistance of suspended MoS using electron beam self-heating technique.

作者信息

Aiyiti Adili, Bai Xue, Wu Jing, Xu Xiangfan, Li Baowen

机构信息

Center for Phononics and Thermal Energy Science, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China; China-EU Joint Center for Nanophononics, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China.

Center for Phononics and Thermal Energy Science, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China; China-EU Joint Center for Nanophononics, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Kent Ridge 119620, Singapore.

出版信息

Sci Bull (Beijing). 2018 Apr 15;63(7):452-458. doi: 10.1016/j.scib.2018.02.022. Epub 2018 Mar 13.

Abstract

Establishment of a new technique or extension of an existing technique for thermal and thermoelectric measurements to a more challenging system is an important task to explore the thermal and thermoelectric properties of various materials and systems. The bottleneck lies in the challenges in measuring the thermal contact resistance. In this work, we applied electron beam self-heating technique to derive the intrinsic thermal conductivity of suspended Molybdenum Disulfide (MoS) ribbons and the thermal contact resistance, with which the interfacial thermal resistance between few-layer MoS and Pt electrodes was calculated. The measured room temperature thermal conductivity of MoS is around ∼30 W/(m K), while the estimated interfacial thermal resistance is around ∼2 × 10 m K/W. Our experiments extend a useful branch in application of this technique for studying thermal properties of suspended layered ribbons and have potential application in investigating the interfacial thermal resistance of different two-dimensional (2D) heterojunctions.

摘要

建立一种新技术或将现有的热学和热电测量技术扩展到更具挑战性的系统,是探索各种材料和系统的热学和热电特性的一项重要任务。瓶颈在于测量热接触电阻方面存在挑战。在这项工作中,我们应用电子束自热技术来推导悬浮二硫化钼(MoS)带的本征热导率和热接触电阻,并据此计算了少层MoS与Pt电极之间的界面热阻。测得的MoS室温热导率约为30 W/(m·K),而估计的界面热阻约为2×10 m·K/W。我们的实验为该技术在研究悬浮层状带热特性方面的应用拓展了一个有用的分支,并且在研究不同二维(2D)异质结的界面热阻方面具有潜在应用价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验