Zhou Chunran, Zhou Zheng, Han Yushui, Lei Zhuogui, Li Lei, Montardy Quentin, Liu Xuemei, Xu Fuqiang, Wang Liping
Shenzhen Key Laboratory of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China.
Southern Medical University, Guangzhou 510168, China.
Sci Bull (Beijing). 2018 Jun 30;63(12):771-778. doi: 10.1016/j.scib.2018.05.030. Epub 2018 May 31.
The ability to detect conspecific's distress is crucial for animal survival. In rodent models, observational fear (OF) occurs when one animal perceives another fear related negative emotions, which may model certain behaviors caused by witnessing traumatic experiences in humans. Anterior cingulate cortex (ACC) has been showed to play a crucial role in OF. However, cellular and neural circuit basis relating to ACC governing OF is poorly understood. Here, we used Designer Receptor Exclusively Activated by a Designer Drug (DREADD) system to investigate the cell type specific circuit mechanism of ACC in OF. Firstly, inhibitory hM4D (Gi) designer receptor together with clozapine N-oxide (CNO) injection was applied to inactivate ACC neurons in the observer mice. We found that, chemogenetic inhibition of ACC resulted in a decreased freezing response in the observer mice. Next, combining PV-ires-Cre mice and Cre-dependent DREADD system, we selectively targeted the ACC parvalbumin (PV) interneurons with the excitatory hM3D (Gq) designer receptor. Activation of ACC PV interneurons following CNO injection reduced freezing response in the observer mice, while had no effect on freezing response in the demonstrator mice. Finally, monosynaptic rabies retrograde tracing revealed that ACC PV interneurons receive inputs from the mediodorsal thalamic nucleus (MD) and the ventromedial thalamic nucleus (VM), both known for their roles in OF. Taken together, these findings reveal that ACC activation is important for OF, during which PV interneurons in ACC play an important regulatory role. Abnormal function of ACC PV interneurons might contribute to the pathology of empathy- deficits related diseases, such as autism and schizophrenia.
检测同种个体的痛苦对于动物生存至关重要。在啮齿动物模型中,当一只动物感知到另一只动物的恐惧相关负面情绪时,就会出现观察性恐惧(OF),这可能模拟了人类目睹创伤经历后引发的某些行为。前扣带皮层(ACC)已被证明在观察性恐惧中起关键作用。然而,与ACC调控观察性恐惧相关的细胞和神经回路基础却知之甚少。在此,我们使用设计药物特异性激活的设计受体(DREADD)系统来研究ACC在观察性恐惧中的细胞类型特异性回路机制。首先,将抑制性hM4D(Gi)设计受体与氯氮平N-氧化物(CNO)注射相结合,用于使观察小鼠的ACC神经元失活。我们发现,对ACC进行化学遗传学抑制会导致观察小鼠的僵住反应降低。接下来,结合PV-ires-Cre小鼠和Cre依赖性DREADD系统,我们用兴奋性hM3D(Gq)设计受体选择性地靶向ACC小白蛋白(PV)中间神经元。注射CNO后激活ACC的PV中间神经元会降低观察小鼠的僵住反应,而对示范小鼠的僵住反应没有影响。最后,单突触狂犬病逆行追踪显示,ACC的PV中间神经元接收来自丘脑背内侧核(MD)和丘脑腹内侧核(VM)的输入,这两个核都在观察性恐惧中发挥作用。综上所述,这些发现表明ACC的激活对观察性恐惧很重要,在此过程中ACC中的PV中间神经元发挥重要的调节作用。ACC的PV中间神经元功能异常可能导致与共情缺陷相关疾病(如自闭症和精神分裂症)的病理发生。