Panthi Sandesh, Leitch Beulah
Department of Anatomy, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, Dunedin, New Zealand.
Front Cell Neurosci. 2021 May 28;15:688905. doi: 10.3389/fncel.2021.688905. eCollection 2021.
Parvalbumin-expressing (PV+) interneurons are a subset of GABAergic inhibitory interneurons that mediate feed-forward inhibition (FFI) within the cortico-thalamocortical (CTC) network of the brain. The CTC network is a reciprocal loop with connections between cortex and thalamus. FFI PV+ interneurons control the firing of principal excitatory neurons within the CTC network and prevent runaway excitation. Studies have shown that generalized spike-wave discharges (SWDs), the hallmark of absence seizures on electroencephalogram (EEG), originate within the CTC network. In the stargazer mouse model of absence epilepsy, reduced FFI is believed to contribute to absence seizure genesis as there is a specific loss of excitatory α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) at synaptic inputs to PV+ interneurons within the CTC network. However, the degree to which this deficit is directly related to seizure generation has not yet been established. Using chemogenetics and EEG recording, we recently demonstrated that functional silencing of PV+ interneurons in either the somatosensory cortex (SScortex) or the reticular thalamic nucleus (RTN) is sufficient to generate absence-SWDs. Here, we used the same approach to assess whether activating PV+ FFI interneurons within the CTC network during absence seizures would prevent or reduce seizures. To target these interneurons, mice expressing Cre recombinase in PV+ interneurons (PV-Cre) were bred with mice expressing excitatory Gq-DREADD (hM3Dq-flox) receptors. An intraperitoneal dose of pro-epileptic chemical pentylenetetrazol (PTZ) was used to induce absence seizure. The impact of activation of FFI PV+ interneurons during seizures was tested by focal injection of the "designer drug" clozapine N-oxide (CNO) into either the SScortex or the RTN thalamus. Seizures were assessed in PV/Gq-DREADD animals using EEG/video recordings. Overall, DREADD-mediated activation of PV+ interneurons provided anti-epileptic effects against PTZ-induced seizures. CNO activation of FFI either prevented PTZ-induced absence seizures or suppressed their severity. Furthermore, PTZ-induced tonic-clonic seizures were also reduced in severity by activation of FFI PV+ interneurons. In contrast, administration of CNO to non-DREADD wild-type control animals did not afford any protection against PTZ-induced seizures. These data demonstrate that FFI PV+ interneurons within CTC microcircuits could be a potential therapeutic target for anti-absence seizure treatment in some patients.
表达小白蛋白(PV+)的中间神经元是γ-氨基丁酸能抑制性中间神经元的一个亚群,在大脑的皮质-丘脑-皮质(CTC)网络中介导前馈抑制(FFI)。CTC网络是一个皮质与丘脑之间相互连接的环路。FFI PV+中间神经元控制CTC网络内主要兴奋性神经元的放电,并防止兴奋失控。研究表明,脑电图(EEG)上失神发作的标志——全身性棘波放电(SWDs)起源于CTC网络。在失神癫痫的凝视小鼠模型中,FFI降低被认为是失神发作发生的原因,因为在CTC网络内PV+中间神经元的突触输入处存在兴奋性α-氨基-3-羟基-5-甲基-4-异恶唑丙酸受体(AMPARs)的特异性缺失。然而,这种缺陷与癫痫发作产生的直接关联程度尚未确定。我们最近利用化学遗传学和EEG记录证明,体感皮层(SScortex)或丘脑网状核(RTN)中PV+中间神经元的功能沉默足以产生失神SWDs。在此,我们采用相同的方法来评估在失神发作期间激活CTC网络内的PV+ FFI中间神经元是否会预防或减少癫痫发作。为了靶向这些中间神经元,将在PV+中间神经元中表达Cre重组酶的小鼠(PV-Cre)与表达兴奋性Gq-DREADD(hM3Dq-flox)受体的小鼠进行杂交。腹腔注射促癫痫化学物质戊四氮(PTZ)来诱发失神发作。通过向SScortex或RTN丘脑局部注射“设计药物”氯氮平N-氧化物(CNO)来测试癫痫发作期间FFI PV+中间神经元激活的影响。使用EEG/视频记录评估PV/Gq-DREADD动物的癫痫发作情况。总体而言,DREADD介导的PV+中间神经元激活对PTZ诱导的癫痫发作具有抗癫痫作用。FFI的CNO激活可预防PTZ诱导的失神发作或减轻其严重程度。此外,激活FFI PV+中间神经元也可降低PTZ诱导的强直-阵挛性发作的严重程度。相比之下,向非DREADD野生型对照动物施用CNO并不能为PTZ诱导的癫痫发作提供任何保护。这些数据表明,CTC微回路中的FFI PV+中间神经元可能是某些患者抗失神发作治疗的潜在治疗靶点。