Suppr超能文献

荧光寿命:击败 IRF 和脉冲间隔窗口。

Fluorescence lifetime: Beating the IRF and interpulse window.

机构信息

Center for Biological Physics, Arizona State University, Tempe, Arizona; Department of Physics, Arizona State University, Tempe, Arizona.

Department of Biomedical Engineering, University of California Irvine, Irvine, California; Laboratory of Fluorescence Dynamics, The Henry Samueli School of Engineering, University of California Irvine, Irvine, California.

出版信息

Biophys J. 2023 Feb 21;122(4):672-683. doi: 10.1016/j.bpj.2023.01.014. Epub 2023 Jan 19.

Abstract

Fluorescence lifetime imaging captures the spatial distribution of chemical species across cellular environments employing pulsed illumination confocal setups. However, quantitative interpretation of lifetime data continues to face critical challenges. For instance, fluorescent species with known in vitro excited-state lifetimes may split into multiple species with unique lifetimes when introduced into complex living environments. What is more, mixtures of species, which may be both endogenous and introduced into the sample, may exhibit 1) very similar lifetimes as well as 2) wide ranges of lifetimes including lifetimes shorter than the instrumental response function or whose duration may be long enough to be comparable to the interpulse window. By contrast, existing methods of analysis are optimized for well-separated and intermediate lifetimes. Here, we broaden the applicability of fluorescence lifetime analysis by simultaneously treating unknown mixtures of arbitrary lifetimes-outside the intermediate, Goldilocks, zone-for data drawn from a single confocal spot leveraging the tools of Bayesian nonparametrics (BNP). We benchmark our algorithm, termed BNP lifetime analysis, using a range of synthetic and experimental data. Moreover, we show that the BNP lifetime analysis method can distinguish and deduce lifetimes using photon counts as small as 500.

摘要

荧光寿命成像技术采用脉冲激发共焦设置,可捕获细胞环境中化学物质的空间分布。然而,寿命数据的定量解释仍然面临着严峻的挑战。例如,当已知的体外激发态寿命的荧光物质被引入复杂的活体环境中时,可能会分裂成具有独特寿命的多个物质。更有甚者,可能既有内源性的也有引入到样本中的物质的混合物,其寿命可能具有以下特征:1)非常相似;2)寿命范围很宽,包括比仪器响应函数短的寿命,或者寿命可能足够长,可以与脉冲间隔窗口相媲美。相比之下,现有的分析方法是针对分离良好且处于中间寿命范围的物质进行优化的。在这里,我们通过利用贝叶斯非参数化(BNP)的工具,同时处理来自单个共焦点的任意寿命的未知混合物(处于中间、黄金区域之外)的数据,拓宽了荧光寿命分析的适用性。我们使用一系列合成和实验数据来对我们的算法(称为 BNP 寿命分析)进行基准测试。此外,我们还表明,BNP 寿命分析方法可以使用少至 500 个光子计数来区分和推断寿命。

相似文献

1
Fluorescence lifetime: Beating the IRF and interpulse window.
Biophys J. 2023 Feb 21;122(4):672-683. doi: 10.1016/j.bpj.2023.01.014. Epub 2023 Jan 19.
2
High Resolution Fluorescence Lifetime Maps from Minimal Photon Counts.
ACS Photonics. 2022 Mar 16;9(3):1015-1025. doi: 10.1021/acsphotonics.1c01936. Epub 2022 Feb 10.
3
Building Fluorescence Lifetime Maps Photon-by-Photon by Leveraging Spatial Correlations.
ACS Photonics. 2023 Oct 18;10(10):3558-3569. doi: 10.1021/acsphotonics.3c00595. Epub 2023 Sep 21.
4
Global analysis of fluorescence lifetime imaging microscopy data.
Biophys J. 2000 Apr;78(4):2127-37. doi: 10.1016/S0006-3495(00)76759-2.
5
Direct Photon-by-Photon Analysis of Time-Resolved Pulsed Excitation Data using Bayesian Nonparametrics.
Cell Rep Phys Sci. 2020 Nov 18;1(11). doi: 10.1016/j.xcrp.2020.100234. Epub 2020 Oct 14.
6
Frequency domain fluorescence lifetime study of crude petroleum oils.
J Fluoresc. 2008 Sep;18(5):997-1006. doi: 10.1007/s10895-008-0330-5. Epub 2008 Feb 7.
7
Accurate Rapid Lifetime Determination on Time-Gated FLIM Microscopy with Optical Sectioning.
J Healthc Eng. 2018 Jan 16;2018:1371386. doi: 10.1155/2018/1371386. eCollection 2018.
10
Fluorescence lifetime imaging microscopy using near-infrared contrast agents.
J Microsc. 2012 Aug;247(2):202-7. doi: 10.1111/j.1365-2818.2012.03634.x.

引用本文的文献

1
Highly multiplexed spectral FLIM via physics informed data analysis.
bioRxiv. 2025 Aug 12:2025.08.04.668462. doi: 10.1101/2025.08.04.668462.
2
Simultaneous particle tracking, phase retrieval and point spread function reconstruction.
bioRxiv. 2025 May 6:2025.05.02.651986. doi: 10.1101/2025.05.02.651986.
3
Building Fluorescence Lifetime Maps Photon-by-Photon by Leveraging Spatial Correlations.
ACS Photonics. 2023 Oct 18;10(10):3558-3569. doi: 10.1021/acsphotonics.3c00595. Epub 2023 Sep 21.
5
Fluorescence Microscopy: a statistics-optics perspective.
ArXiv. 2023 Oct 17:arXiv:2304.01456v3.
6
Single-photon smFRET. I: Theory and conceptual basis.
Biophys Rep (N Y). 2022 Dec 2;3(1):100089. doi: 10.1016/j.bpr.2022.100089. eCollection 2023 Mar 8.
7
Single-photon smFRET. III. Application to pulsed illumination.
Biophys Rep (N Y). 2022 Nov 25;2(4):100088. doi: 10.1016/j.bpr.2022.100088. eCollection 2022 Dec 14.

本文引用的文献

1
Gene expression model inference from snapshot RNA data using Bayesian non-parametrics.
Nat Comput Sci. 2023 Feb;3(2):174-183. doi: 10.1038/s43588-022-00392-0. Epub 2023 Jan 19.
2
Single-photon smFRET: II. Application to continuous illumination.
Biophys Rep (N Y). 2022 Dec 2;3(1):100087. doi: 10.1016/j.bpr.2022.100087. eCollection 2023 Mar 8.
3
Single-photon smFRET. I: Theory and conceptual basis.
Biophys Rep (N Y). 2022 Dec 2;3(1):100089. doi: 10.1016/j.bpr.2022.100089. eCollection 2023 Mar 8.
4
Single-photon smFRET. III. Application to pulsed illumination.
Biophys Rep (N Y). 2022 Nov 25;2(4):100088. doi: 10.1016/j.bpr.2022.100088. eCollection 2022 Dec 14.
5
High-precision estimation of emitter positions using Bayesian grouping of localizations.
Nat Commun. 2022 Nov 22;13(1):7152. doi: 10.1038/s41467-022-34894-2.
6
Single-Photon, Time-Gated, Phasor-Based Fluorescence Lifetime Imaging through Highly Scattering Medium.
ACS Photonics. 2020 Jan 15;7(1):68-79. doi: 10.1021/acsphotonics.9b00874. Epub 2019 Nov 13.
7
Diffraction-Limited Molecular Cluster Quantification with Bayesian Nonparametrics.
Nat Comput Sci. 2022 Feb;2(2):102-111. doi: 10.1038/s43588-022-00197-1. Epub 2022 Feb 28.
8
High Resolution Fluorescence Lifetime Maps from Minimal Photon Counts.
ACS Photonics. 2022 Mar 16;9(3):1015-1025. doi: 10.1021/acsphotonics.1c01936. Epub 2022 Feb 10.
9
Single-molecule localization microscopy.
Nat Rev Methods Primers. 2021;1. doi: 10.1038/s43586-021-00038-x. Epub 2021 Jun 3.
10
Modeling Non-additive Effects in Neighboring Chemically Identical Fluorophores.
J Phys Chem B. 2022 Jun 1. doi: 10.1021/acs.jpcb.2c01889.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验