Suppr超能文献

通过高散射介质的单光子、时间选通、基于相量的荧光寿命成像

Single-Photon, Time-Gated, Phasor-Based Fluorescence Lifetime Imaging through Highly Scattering Medium.

作者信息

Ankri Rinat, Basu Arkaprabha, Ulku Arin Can, Bruschini Claudio, Charbon Edoardo, Weiss Shimon, Michalet Xavier

机构信息

Department of Chemistry & Biochemistry, UCLA, Los Angeles, California 90095, United States.

School of Engineering, École Polytechnique Fédérale de Lausanne, Neuchâtel 1015, Switzerland.

出版信息

ACS Photonics. 2020 Jan 15;7(1):68-79. doi: 10.1021/acsphotonics.9b00874. Epub 2019 Nov 13.

Abstract

Fluorescence lifetime imaging (FLI) is increasingly recognized as a powerful tool for biochemical and cellular investigations, including applications. Fluorescence lifetime is an intrinsic characteristic of any fluorescent dye which, to a large extent, does not depend on excitation intensity and signal level. In particular, it allows distinguishing dyes with similar emission spectra, offering additional multiplexing capabilities. However, FLI in the visible range is complicated by the contamination by (i) tissue autofluorescence, which decreases contrast, and by (ii) light scattering and absorption in tissues, which significantly reduce fluorescence intensity and modify the temporal profile of the signal. Here, we demonstrate how these issues can be accounted for and overcome, using a new time-gated single-photon avalanche diode array camera, SwissSPAD2, combined with phasor analysis to provide a simple and fast visual method for lifetime imaging. In particular, we show how phasor dispersion increases with increasing scattering and/or decreasing fluorescence intensity. Next, we show that as long as the fluorescence signal of interest is larger than the phantom autofluorescence, the presence of a distinct lifetime can be clearly identified with appropriate background correction. We use these results to demonstrate the detection of A459 cells expressing the fluorescent protein mCyRFP1 through highly scattering and autofluorescent phantom layers. These results showcase the possibility to perform FLI in challenging conditions, using standard, bright, visible fluorophore or fluorescence proteins.

摘要

荧光寿命成像(FLI)越来越被认为是一种用于生物化学和细胞研究(包括各种应用)的强大工具。荧光寿命是任何荧光染料的固有特性,在很大程度上不依赖于激发强度和信号水平。特别是,它能够区分发射光谱相似的染料,提供额外的多路复用能力。然而,可见范围内的FLI因以下因素而变得复杂:(i)组织自发荧光的干扰,这会降低对比度;(ii)组织中的光散射和吸收,这会显著降低荧光强度并改变信号的时间分布。在这里,我们展示了如何使用新型时间选通单光子雪崩二极管阵列相机SwissSPAD2并结合相量分析来解决和克服这些问题,从而提供一种简单快速的寿命成像视觉方法。特别是,我们展示了相量色散如何随着散射增加和/或荧光强度降低而增加。接下来,我们表明只要感兴趣的荧光信号大于模拟体自发荧光,通过适当的背景校正就可以清晰地识别出独特的寿命。我们利用这些结果展示了通过高散射和自发荧光模拟体层检测表达荧光蛋白mCyRFP1的A459细胞。这些结果展示了在具有挑战性的条件下使用标准、明亮的可见荧光团或荧光蛋白进行FLI的可能性。

相似文献

1
Single-Photon, Time-Gated, Phasor-Based Fluorescence Lifetime Imaging through Highly Scattering Medium.
ACS Photonics. 2020 Jan 15;7(1):68-79. doi: 10.1021/acsphotonics.9b00874. Epub 2019 Nov 13.
2
Multiplexed near infrared fluorescence lifetime imaging in turbid media.
J Biomed Opt. 2024 Feb;29(2):026004. doi: 10.1117/1.JBO.29.2.026004. Epub 2024 Feb 29.
3
and NIR fluorescence lifetime imaging with a time-gated SPAD camera.
Optica. 2022 May;9(5):532-544. doi: 10.1364/OPTICA.454790. Epub 2022 May 9.
4
Phasor Analysis of Fluorescence Lifetime Enables Quantitative Multiplexed Molecular Imaging of Three Probes.
Anal Chem. 2022 Oct 18;94(41):14185-14194. doi: 10.1021/acs.analchem.2c02149. Epub 2022 Oct 3.
5
NIR Fluorescence lifetime macroscopic imaging with a time-gated SPAD camera.
Proc SPIE Int Soc Opt Eng. 2022 Jan-Feb;11965. doi: 10.1117/12.2607833. Epub 2022 Mar 3.
6
NIR Fluorescence lifetime macroscopic imaging with a novel time-gated SPAD camera.
Proc SPIE Int Soc Opt Eng. 2023 Jan-Feb;12384. doi: 10.1117/12.2649227. Epub 2023 Apr 25.
7
Real-time multispectral fluorescence lifetime imaging using Single Photon Avalanche Diode arrays.
Sci Rep. 2020 May 15;10(1):8116. doi: 10.1038/s41598-020-65218-3.
8
Au nanodyes as enhanced contrast agents in wide field near infrared fluorescence lifetime imaging.
Discov Nano. 2024 Jan 25;19(1):18. doi: 10.1186/s11671-024-03958-1.

引用本文的文献

1
AlliGator: Open Source Fluorescence Lifetime Imaging Analysis in G.
bioRxiv. 2025 Jun 18:2025.05.22.655640. doi: 10.1101/2025.05.22.655640.
2
Toward measurements of absolute membrane potential in Bacillus subtilis using fluorescence lifetime.
Biophys Rep (N Y). 2025 Mar 12;5(1):100196. doi: 10.1016/j.bpr.2025.100196. Epub 2025 Jan 10.
3
Towards measurements of absolute membrane potential in Bacillus subtilis using fluorescence lifetime.
bioRxiv. 2024 Dec 21:2024.06.13.598880. doi: 10.1101/2024.06.13.598880.
4
Multiplexed near infrared fluorescence lifetime imaging in turbid media.
J Biomed Opt. 2024 Feb;29(2):026004. doi: 10.1117/1.JBO.29.2.026004. Epub 2024 Feb 29.
5
Au nanodyes as enhanced contrast agents in wide field near infrared fluorescence lifetime imaging.
Discov Nano. 2024 Jan 25;19(1):18. doi: 10.1186/s11671-024-03958-1.
6
Fluorescence lifetime: Beating the IRF and interpulse window.
Biophys J. 2023 Feb 21;122(4):672-683. doi: 10.1016/j.bpj.2023.01.014. Epub 2023 Jan 19.
7
NIR Fluorescence lifetime macroscopic imaging with a time-gated SPAD camera.
Proc SPIE Int Soc Opt Eng. 2022 Jan-Feb;11965. doi: 10.1117/12.2607833. Epub 2022 Mar 3.
8
and NIR fluorescence lifetime imaging with a time-gated SPAD camera.
Optica. 2022 May;9(5):532-544. doi: 10.1364/OPTICA.454790. Epub 2022 May 9.
9
Direct Photon-by-Photon Analysis of Time-Resolved Pulsed Excitation Data using Bayesian Nonparametrics.
Cell Rep Phys Sci. 2020 Nov 18;1(11). doi: 10.1016/j.xcrp.2020.100234. Epub 2020 Oct 14.
10
Deep Learning in Biomedical Optics.
Lasers Surg Med. 2021 Aug;53(6):748-775. doi: 10.1002/lsm.23414. Epub 2021 May 20.

本文引用的文献

1
AlliGator: A Phasor Computational Platform for Fast Lifetime Analysis.
Opt Mol Probes Imaging Drug Deliv. 2017 Apr;2017. doi: 10.1364/omp.2017.omtu2d.2.
2
Wide-field time-gated SPAD imager for phasor-based FLIM applications.
Methods Appl Fluoresc. 2020 Feb 5;8(2):024002. doi: 10.1088/2050-6120/ab6ed7.
3
A 512×512 SPAD Image Sensor with Integrated Gating for Widefield FLIM.
IEEE J Sel Top Quantum Electron. 2019 Jan-Feb;25(1). doi: 10.1109/JSTQE.2018.2867439. Epub 2018 Aug 28.
5
Exploiting scattering media for exploring 3D objects.
Light Sci Appl. 2017 Feb 24;6(2):e16219. doi: 10.1038/lsa.2016.219. eCollection 2017 Feb.
6
Pathogen Detection Using Frequency Domain Fluorescent Lifetime Measurements.
IEEE Trans Biomed Eng. 2018 Dec;65(12):2731-2741. doi: 10.1109/TBME.2018.2814597. Epub 2018 Mar 9.
7
Fluorescence time-resolved macroimaging.
Opt Lett. 2018 Jul 1;43(13):3152-3155. doi: 10.1364/OL.43.003152.
8
Extended depth-resolved imaging through a thin scattering medium with PSF manipulation.
Sci Rep. 2018 Mar 15;8(1):4585. doi: 10.1038/s41598-018-22966-7.
9
Simultaneous dual-color fluorescence lifetime imaging with novel red-shifted fluorescent proteins.
Nat Methods. 2016 Dec;13(12):989-992. doi: 10.1038/nmeth.4046. Epub 2016 Oct 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验