Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544.
Department of Structures for Engineering and Architecture, University of Naples Federico II, 80131, Naples, Italy.
Proc Natl Acad Sci U S A. 2023 Jan 24;120(4):e2209048120. doi: 10.1073/pnas.2209048120. Epub 2023 Jan 20.
Creases are purposely introduced to thin structures for designing deployable origami, artistic geometries, and functional structures with tunable nonlinear mechanics. Modeling the mechanics of creased structures is challenging because creases introduce geometric discontinuity and often have complex mechanical responses due to local material damage. In this work, we propose a continuous description of the sharp geometry of creases and apply it to the study of creased annuli, made by introducing radial creases to annular strips with the creases annealed to behave elastically. We find that creased annuli have generic bistability and can be folded into various compact shapes, depending on the crease pattern and the overcurvature of the flat annulus. We use a regularized Dirac delta function (RDDF) to describe the geometry of a crease, with the finite spike of the RDDF capturing the localized curvature. Together with anisotropic rod theory, we solve the nonlinear mechanics of creased annuli, with its stability determined by the standard conjugate point test. We find excellent agreement between precision tabletop models, numerical predictions from our analytical framework, and modeling results from finite element simulations. We further show that by varying the rest curvature of the thin strip, dynamic switches between different states of creased annuli can be achieved, which could inspire the design of deployable and morphable structures. We believe that our smooth description of discontinuous geometries will benefit the mechanical modeling and design of a wide spectrum of engineering structures that embrace geometric and material discontinuities.
折痕被有意引入到薄结构中,用于设计可展开的折纸、艺术几何形状和具有可调非线性力学的功能结构。对带折痕结构的力学进行建模具有挑战性,因为折痕会引入几何不连续性,并且由于局部材料损坏,通常具有复杂的力学响应。在这项工作中,我们提出了一种折痕的尖锐几何的连续描述,并将其应用于折痕环的研究,通过在环形带中引入径向折痕来实现,然后将折痕退火以表现出弹性。我们发现折痕环具有通用的双稳定性,并且可以根据折痕图案和扁平环的过曲率折叠成各种紧凑形状。我们使用正则化狄拉克 delta 函数 (RDDF) 来描述折痕的几何形状,其中 RDDF 的有限尖峰捕获局部曲率。我们结合各向异性杆理论,解决了带折痕的环的非线性力学问题,其稳定性由标准共轭点测试确定。我们发现精密台架模型、我们的分析框架的数值预测以及有限元模拟的建模结果之间具有极好的一致性。我们进一步表明,通过改变薄带的剩余曲率,可以实现折痕环不同状态之间的动态切换,这可能会启发可展开和可变形结构的设计。我们相信,我们对不连续几何形状的平滑描述将有利于广泛工程结构的力学建模和设计,这些结构包含几何和材料不连续性。