Suppr超能文献

基于相对密度的直觉模糊支持向量机用于类别不平衡学习

Relative Density-Based Intuitionistic Fuzzy SVM for Class Imbalance Learning.

作者信息

Fu Cui, Zhou Shuisheng, Zhang Dan, Chen Li

机构信息

School of Mathematics and Statistics, Xi'dian University, Xi'an 710071, China.

School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450001, China.

出版信息

Entropy (Basel). 2022 Dec 24;25(1):34. doi: 10.3390/e25010034.

Abstract

The support vector machine (SVM) has been combined with the intuitionistic fuzzy set to suppress the negative impact of noises and outliers in classification. However, it has some inherent defects, resulting in the inaccurate prior distribution estimation for datasets, especially the imbalanced datasets with non-normally distributed data, further reducing the performance of the classification model for imbalance learning. To solve these problems, we propose a novel relative density-based intuitionistic fuzzy support vector machine (RIFSVM) algorithm for imbalanced learning in the presence of noise and outliers. In our proposed algorithm, the relative density, which is estimated by adopting the k-nearest-neighbor distances, is used to calculate the intuitionistic fuzzy numbers. The fuzzy values of the majority class instances are designed by multiplying the score function of the intuitionistic fuzzy number by the imbalance ratio, and the fuzzy values of minority class instances are assigned the intuitionistic fuzzy membership degree. With the help of the strong capture ability of the relative density to prior information and the strong recognition ability of the intuitionistic fuzzy score function to noises and outliers, the proposed RIFSVM not only reduces the influence of class imbalance but also suppresses the impact of noises and outliers, and further improves the classification performance. Experiments on the synthetic and public imbalanced datasets show that our approach has better performance in terms of G-Means, F-Measures, and AUC than the other class imbalance classification algorithms.

摘要

支持向量机(SVM)已与直觉模糊集相结合,以抑制分类中噪声和离群值的负面影响。然而,它存在一些固有缺陷,导致对数据集的先验分布估计不准确,特别是对于具有非正态分布数据的不平衡数据集,进一步降低了不平衡学习分类模型的性能。为了解决这些问题,我们提出了一种新颖的基于相对密度的直觉模糊支持向量机(RIFSVM)算法,用于在存在噪声和离群值的情况下进行不平衡学习。在我们提出的算法中,通过采用k近邻距离估计的相对密度用于计算直觉模糊数。多数类实例的模糊值通过将直觉模糊数的得分函数乘以不平衡率来设计,少数类实例的模糊值被赋予直觉模糊隶属度。借助相对密度对先验信息的强捕获能力以及直觉模糊得分函数对噪声和离群值的强识别能力,所提出的RIFSVM不仅减少了类不平衡的影响,还抑制了噪声和离群值的影响,并进一步提高了分类性能。在合成和公共不平衡数据集上的实验表明,我们的方法在G均值、F度量和AUC方面比其他类不平衡分类算法具有更好的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0491/9857943/9ed9bd831b68/entropy-25-00034-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验