Suppr超能文献

使用机器学习和深度学习对与病理性震颤相关的运动学和肌电信号进行分类

Classification of Kinematic and Electromyographic Signals Associated with Pathological Tremor Using Machine and Deep Learning.

作者信息

Pascual-Valdunciel Alejandro, Lopo-Martínez Víctor, Beltrán-Carrero Alberto J, Sendra-Arranz Rafael, González-Sánchez Miguel, Pérez-Sánchez Javier Ricardo, Grandas Francisco, Farina Dario, Pons José L, Oliveira Barroso Filipe, Gutiérrez Álvaro

机构信息

E.T.S. Ingenieros de Telecomunicación, Universidad Politécnica de Madrid, 28040 Madrid, Spain.

Neural Rehabilitation Group, Cajal Institute, Spanish National Research Council (CSIC), 28002 Madrid, Spain.

出版信息

Entropy (Basel). 2023 Jan 5;25(1):114. doi: 10.3390/e25010114.

Abstract

Peripheral Electrical Stimulation (PES) of afferent pathways has received increased interest as a solution to reduce pathological tremors with minimal side effects. Closed-loop PES systems might present some advantages in reducing tremors, but further developments are required in order to reliably detect pathological tremors to accurately enable the stimulation only if a tremor is present. This study explores different machine learning (K-Nearest Neighbors, Random Forest and Support Vector Machines) and deep learning (Long Short-Term Memory neural networks) models in order to provide a binary (; ) classification of kinematic (angle displacement) and electromyography (EMG) signals recorded from patients diagnosed with essential tremors and healthy subjects. Three types of signal sequences without any feature extraction were used as inputs for the classifiers: kinematics (wrist flexion-extension angle), raw EMG and EMG envelopes from wrist flexor and extensor muscles. All the models showed high classification scores ( vs. ) for the different input data modalities, ranging from 0.8 to 0.99 for the f score. The LSTM models achieved 0.98 f scores for the classification of raw EMG signals, showing high potential to detect tremors without any processed features or preliminary information. These models may be explored in real-time closed-loop PES strategies to detect tremors and enable stimulation with minimal signal processing steps.

摘要

作为一种副作用最小化的减少病理性震颤的解决方案,传入通路的外周电刺激(PES)已受到越来越多的关注。闭环PES系统在减少震颤方面可能具有一些优势,但为了可靠地检测病理性震颤,以便仅在震颤出现时准确地启动刺激,还需要进一步发展。本研究探索了不同的机器学习(K近邻、随机森林和支持向量机)和深度学习(长短期记忆神经网络)模型,以便对从被诊断为特发性震颤的患者和健康受试者记录的运动学(角位移)和肌电图(EMG)信号进行二元(;)分类。三种未进行任何特征提取的信号序列被用作分类器的输入:运动学(腕部屈伸角度)、原始EMG以及腕部屈肌和伸肌的EMG包络。对于不同的输入数据模式,所有模型都显示出较高的分类分数(与相比),f分数范围为0.8至0.99。LSTM模型在原始EMG信号分类中获得了0.98的f分数,显示出在无需任何处理特征或初步信息的情况下检测震颤的巨大潜力。这些模型可在实时闭环PES策略中进行探索,以检测震颤并以最少的信号处理步骤启动刺激。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e118/9858124/83c9bb0fe738/entropy-25-00114-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验