Han Yu-Keun, Jung Sung-Woon, Kwon Hyuk-Ju, Lee Sung-Hak
School of Electronic and Electrical Engineering, Kyungpook National University, 80 Deahakro, Buk-Gu, Daegu 702-701, Republic of Korea.
Entropy (Basel). 2023 Jan 6;25(1):118. doi: 10.3390/e25010118.
In this study, we proposed an image conversion method that efficiently removes raindrops on a camera lens from an image using a deep learning technique. The proposed method effectively presents a raindrop-removed image using the Pix2pix generative adversarial network (GAN) model, which can understand the characteristics of two images in terms of newly formed images of different domains. The learning method based on the captured image has the disadvantage that a large amount of data is required for learning and that unnecessary noise is generated owing to the nature of the learning model. In particular, obtaining sufficient original and raindrops images is the most important aspect of learning. Therefore, we proposed a method that efficiently obtains learning data by generating virtual water-drop image data and effectively identifying it using a convolutional neural network (CNN).
在本研究中,我们提出了一种图像转换方法,该方法利用深度学习技术从图像中有效去除相机镜头上的雨滴。所提出的方法使用Pix2pix生成对抗网络(GAN)模型有效地呈现去除雨滴后的图像,该模型能够根据不同领域的新生成图像理解两幅图像的特征。基于捕获图像的学习方法存在以下缺点:学习需要大量数据,并且由于学习模型的性质会产生不必要的噪声。特别是,获取足够的原始图像和雨滴图像是学习的最重要方面。因此,我们提出了一种方法,通过生成虚拟水滴图像数据来有效获取学习数据,并使用卷积神经网络(CNN)对其进行有效识别。