Suppr超能文献

用于从单张图像中去除雨滴的不确定性引导多尺度注意力网络

Uncertainty Guided Multi-Scale Attention Network for Raindrop Removal From a Single Image.

作者信息

Shao Ming-Wen, Li Le, Meng De-Yu, Zuo Wang-Meng

出版信息

IEEE Trans Image Process. 2021;30:4828-4839. doi: 10.1109/TIP.2021.3076283. Epub 2021 May 7.

Abstract

Raindrops adhered to a glass window or camera lens appear in various blurring degrees and resolutions due to the difference in the degrees of raindrops aggregation. The removal of raindrops from a rainy image remains a challenging task because of the density and diversity of raindrops. The abundant location and blur level information are strong prior guide to the task of raindrop removal. However, existing methods use a binary mask to locate and estimate the raindrop with the value 1 (adhesion of raindrops) and 0 (no adhesion), which ignores the diversity of raindrops. Meanwhile, it is noticed that different scale versions of a rainy image have similar raindrop patterns, which makes it possible to employ such complementary information to represent raindrops. In this work, we first propose a soft mask with the value in [-1,1] indicating the blurring level of the raindrops on the background, and explore the positive effect of the blur degree attribute of raindrops on the task of raindrop removal. Secondly, we explore the multi-scale fusion representation for raindrops based on the deep features of the input multi-scale images. The framework is termed uncertainty guided multi-scale attention network (UMAN). Specifically, we construct a multi-scale pyramid structure and introduce an iterative mechanism to extract blur-level information about raindrops to guide the removal of raindrops at different scales. We further introduce the attention mechanism to fuse the input image with the blur-level information, which will highlight raindrop information and reduce the effects of redundant noise. Our proposed method is extensively evaluated on several benchmark datasets and obtains convincing results.

摘要

由于雨滴聚集程度的差异,附着在玻璃窗或相机镜头上的雨滴会呈现出不同程度的模糊和分辨率。由于雨滴的密度和多样性,从雨中图像中去除雨滴仍然是一项具有挑战性的任务。丰富的位置和模糊程度信息是雨滴去除任务的有力先验指导。然而,现有方法使用二进制掩码来定位和估计雨滴,值为1(雨滴附着)和0(无附着),这忽略了雨滴的多样性。同时,人们注意到雨中图像的不同尺度版本具有相似的雨滴模式,这使得利用这种互补信息来表示雨滴成为可能。在这项工作中,我们首先提出一种软掩码,其值在[-1,1]之间,指示背景上雨滴的模糊程度,并探索雨滴模糊程度属性在雨滴去除任务中的积极作用。其次,我们基于输入多尺度图像的深度特征探索雨滴的多尺度融合表示。该框架被称为不确定性引导多尺度注意力网络(UMAN)。具体来说,我们构建了一个多尺度金字塔结构,并引入了一种迭代机制来提取关于雨滴的模糊程度信息,以指导不同尺度下的雨滴去除。我们还引入了注意力机制,将输入图像与模糊程度信息融合,这将突出雨滴信息并减少冗余噪声的影响。我们提出的方法在几个基准数据集上进行了广泛评估,并取得了令人信服的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验