Suppr超能文献

FCKDNet:一种用于语义分割的特征压缩知识蒸馏网络。

FCKDNet: A Feature Condensation Knowledge Distillation Network for Semantic Segmentation.

作者信息

Yuan Wenhao, Lu Xiaoyan, Zhang Rongfen, Liu Yuhong

机构信息

College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, China.

出版信息

Entropy (Basel). 2023 Jan 7;25(1):125. doi: 10.3390/e25010125.

Abstract

As a popular research subject in the field of computer vision, knowledge distillation (KD) is widely used in semantic segmentation (SS). However, based on the learning paradigm of the teacher-student model, the poor quality of teacher network feature knowledge still hinders the development of KD technology. In this paper, we investigate the output features of the teacher-student network and propose a feature condensation-based KD network (FCKDNet), which reduces pseudo-knowledge transfer in the teacher-student network. First, combined with the pixel information entropy calculation rule, we design a feature condensation method to separate the foreground feature knowledge from the background noise of the teacher network outputs. Then, the obtained feature condensation matrix is applied to the original outputs of the teacher and student networks to improve the feature representation capability. In addition, after performing feature condensation on the teacher network, we propose a soft enhancement method of features based on spatial and channel dimensions to improve the dependency of pixels in the feature maps. Finally, we divide the outputs of the teacher network into spatial condensation features and channel condensation features and perform distillation loss calculation with the student network separately to assist the student network to converge faster. Extensive experiments on the public datasets Pascal VOC and Cityscapes demonstrate that our proposed method improves the baseline by 3.16% and 2.98% in terms of mAcc, and 2.03% and 2.30% in terms of mIoU, respectively, and has better segmentation performance and robustness than the mainstream methods.

摘要

作为计算机视觉领域一个热门的研究课题,知识蒸馏(KD)在语义分割(SS)中被广泛应用。然而,基于师生模型的学习范式,教师网络特征知识质量不佳仍阻碍着KD技术的发展。在本文中,我们研究了师生网络的输出特征,并提出了一种基于特征压缩的KD网络(FCKDNet),它减少了师生网络中的伪知识转移。首先,结合像素信息熵计算规则,我们设计了一种特征压缩方法,从教师网络输出的背景噪声中分离出前景特征知识。然后,将得到的特征压缩矩阵应用于教师和学生网络的原始输出,以提高特征表示能力。此外,在对教师网络进行特征压缩后,我们提出了一种基于空间和通道维度的特征软增强方法,以提高特征图中像素的依赖性。最后,我们将教师网络的输出分为空间压缩特征和通道压缩特征,并分别与学生网络进行蒸馏损失计算,以帮助学生网络更快地收敛。在公共数据集Pascal VOC和Cityscapes上进行的大量实验表明,我们提出的方法在mAcc方面分别比基线提高了3.16%和2.98%,在mIoU方面分别提高了2.03%和2.30%,并且比主流方法具有更好的分割性能和鲁棒性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验