Suppr超能文献

MSKD:用于高效医学图像分割的结构化知识蒸馏。

MSKD: Structured knowledge distillation for efficient medical image segmentation.

机构信息

College Of Information Science and Engineering, Northeastern University, Shenyang, Liaoning, China.

出版信息

Comput Biol Med. 2023 Sep;164:107284. doi: 10.1016/j.compbiomed.2023.107284. Epub 2023 Aug 2.

Abstract

In recent years, deep learning has revolutionized the field of medical image segmentation by enabling the development of powerful deep neural networks. However, these models tend to be complex and computationally demanding, posing challenges for practical implementation in clinical settings. To address this issue, we propose an efficient structured knowledge distillation framework that leverages a powerful teacher network to assist in training a lightweight student network. Specifically, we propose the Feature Filtering Distillation method, which focuses on transferring region-level semantic information while minimizing redundant information transmission from the teacher to the student network. This approach effectively mitigates the problem of inaccurate segmentation caused by similar internal organ characteristics. Additionally, we propose the Region Graph Distillation method, which exploits the higher-order representational capabilities of graphs to enable the student network to better imitate structured semantic information from the teacher. To validate the effectiveness of our proposed methods, we conducted experiments on the Synapse multi-organ segmentation and KiTS kidney tumor segmentation datasets using various network models. The results demonstrate that our method significantly improves the segmentation performance of lightweight neural networks, with improvements of up to 18.56% in Dice coefficient. Importantly, our approach achieves these improvements without introducing additional model parameters. Overall, our proposed knowledge distillation methods offer a promising solution for efficient medical image segmentation, empowering medical experts to make more accurate diagnoses and improve patient treatment.

摘要

近年来,深度学习通过开发强大的深度神经网络,彻底改变了医学图像分割领域。然而,这些模型往往复杂且计算量大,在临床环境中实际实施时面临挑战。为了解决这个问题,我们提出了一种高效的结构化知识蒸馏框架,利用强大的教师网络来辅助训练轻量级的学生网络。具体来说,我们提出了特征过滤蒸馏方法,该方法侧重于传输区域级别的语义信息,同时最大限度地减少从教师网络向学生网络传输冗余信息。这种方法有效地减轻了由于相似内部器官特征导致的分割不准确的问题。此外,我们提出了区域图蒸馏方法,该方法利用图的高阶表示能力,使学生网络能够更好地模仿教师的结构化语义信息。为了验证我们提出的方法的有效性,我们在 Synapse 多器官分割和 KiTS 肾脏肿瘤分割数据集上使用各种网络模型进行了实验。结果表明,我们的方法显著提高了轻量级神经网络的分割性能,Dice 系数提高了高达 18.56%。重要的是,我们的方法在不引入额外模型参数的情况下实现了这些改进。总的来说,我们提出的知识蒸馏方法为高效的医学图像分割提供了一个有前途的解决方案,使医学专家能够做出更准确的诊断并改善患者的治疗效果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验