Tangde Vijay M, Bhalekar Anil A
Department of Chemistry, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440 033, India.
106, Himalaya Prestige, South Ambazari Marg, SBI Colony, Gopal Nagar, Nagpur 440 022, India.
Entropy (Basel). 2023 Jan 10;25(1):145. doi: 10.3390/e25010145.
It has been demonstrated by using generalized phenomenological irreversible thermodynamic theory (GPITT) that by replacing the conventional composition variables {xk} by the quantum level composition variables {x˜k,j} corresponding to the nonequilibrium population of the quantum states, the resultant description remains well within the local thermodynamic equilibrium (LTE) domain. The next attempt is to replace the quantum level composition variables by their respective macroscopic manifestations as variables. For example, these manifestations are, say, the observance of fluorescence and phosphorescence, existence of physical fluxes, and ability to register various spectra (microwave, IR, UV-VIS, ESR, NMR, etc.). This exercise results in a framework that resembles with the thermodynamics with internal variables (TIV), which too is obtained as a framework within the LTE domain. This TIV-type framework is easily transformed to an extended irreversible thermodynamics (EIT) type framework, which uses physical fluxes as additional variables. The GPITT in EIT version is also obtained well within the LTE domain. Thus, GPITT becomes a complete version of classical irreversible thermodynamics (CIT). It is demonstrated that LTE is much more flexible than what CIT impresses upon. This conclusion is based on the realization that the spatial uniformity for each tiny pocket (cell) of a spatially non-uniform system remains intact while developing GPITT and obviously in its other versions.
利用广义唯象不可逆热力学理论(GPITT)已经证明,通过用与量子态非平衡布居相对应的量子能级组成变量{x˜k,j}取代传统的组成变量{xk},所得描述仍完全处于局部热力学平衡(LTE)范围内。接下来的尝试是用它们各自的宏观表现作为变量来取代量子能级组成变量。例如,这些表现可以是荧光和磷光的观测、物理通量的存在以及记录各种光谱(微波、红外、紫外 - 可见、电子自旋共振、核磁共振等)的能力。这个过程产生了一个类似于带有内变量的热力学(TIV)的框架,它同样是在LTE范围内得到的一个框架。这种TIV型框架很容易转化为扩展不可逆热力学(EIT)型框架,后者使用物理通量作为额外变量。EIT版本中的GPITT同样也是在LTE范围内得到的。因此,GPITT成为经典不可逆热力学(CIT)的一个完整版本。结果表明,LTE比CIT所给人的印象要灵活得多。这一结论基于这样的认识,即在发展GPITT及其其他版本时,空间非均匀系统中每个微小区域(单元)的空间均匀性保持不变。