Suppr超能文献

一种利用连续RR间期相对变化的计数统计来检测心房颤动的新方法。

A New Approach to Detecting Atrial Fibrillation Using Count Statistics of Relative Changes between Consecutive RR Intervals.

作者信息

Buś Szymon, Jędrzejewski Konrad, Guzik Przemysław

机构信息

Institute of Electronic Systems, Faculty of Electronics and Information Technology, Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warsaw, Poland.

Department of Cardiology-Intensive Therapy and Internal Disease, Poznan University of Medical Sciences, 60-355 Poznan, Poland.

出版信息

J Clin Med. 2023 Jan 15;12(2):687. doi: 10.3390/jcm12020687.

Abstract

BACKGROUND

The ratio of the difference between neighboring RR intervals to the length of the preceding RR interval (x%) represents the relative change in the duration between two cardiac cycles. We investigated the diagnostic properties of the percentage of relative RR interval differences equal to or greater than x% (pRRx%) with x% in a range between 0.25% and 25% for the distinction of atrial fibrillation (AF) from sinus rhythm (SR).

METHODS

We used 1-min ECG segments with RR intervals with either AF (32,141 segments) or SR (32,769 segments) from the publicly available Physionet Long-Term Atrial Fibrillation Database (LTAFDB). The properties of pRRx% for different x% were analyzed using the statistical procedures and metrics commonly used to characterize diagnostic methods.

RESULTS

The distributions of pRRx% for AF and SR differ significantly over the whole studied range of x% from 0.25% to 25%, with particularly outstanding diagnostic properties for the x% range of 1.5% to 6%. However, pRR3.25% outperformed other pRRx%. Firstly, it had one of the highest and closest to perfect areas under the curve (0.971). For pRR3.25%, the optimal threshold for distinction AF from SR was set at 75.32%. Then, the accuracy was 95.44%, sensitivity was 97.16%, specificity was 93.76%, the positive predictive value was 93.85%, the negative predictive value was 97.11%, and the diagnostic odds ratio was 514. The excellent diagnostic properties of pRR3.25% were confirmed in the publicly available MIT-BIH Atrial Fibrillation Database. In a direct comparison, pRR3.25% outperformed the diagnostic properties of pRR31 (the percentage of successive RR intervals differing by at least 31 ms), i.e., so far, the best single parameter differentiating AF from SR.

CONCLUSIONS

A family of pRRx% parameters has excellent diagnostic properties for AF detection in a range of x% between 1.5% and 6%. However, pRR3.25% outperforms other pRRx% parameters and pRR31 (until now, probably the most robust single heart rate variability parameter for AF diagnosis). The exquisite pRRx% diagnostic properties for AF and its simple computation make it well-suited for AF detection in modern ECG technologies (mobile/wearable devices, biopatches) in long-term monitoring. The diagnostic properties of pRRx% deserve further exploration in other databases with AF.

摘要

背景

相邻RR间期差值与前一个RR间期长度的比值(x%)代表两个心动周期之间时长的相对变化。我们研究了相对RR间期差值百分比(pRRx%)在0.25%至25%范围内对区分心房颤动(AF)和窦性心律(SR)的诊断特性。

方法

我们使用了公开可用的Physionet长期心房颤动数据库(LTAFDB)中1分钟的RR间期心电图片段,其中AF有32141段,SR有32769段。使用常用于表征诊断方法的统计程序和指标分析了不同x%时pRRx%的特性。

结果

在整个研究的x%范围(从0.25%到25%)内,AF和SR的pRRx%分布有显著差异,在1.5%至6%的x%范围内具有特别突出的诊断特性。然而,pRR3.25%优于其他pRRx%。首先,它具有最高且最接近完美的曲线下面积之一(0.971)。对于pRR3.25%,区分AF和SR的最佳阈值设定为75.32%。然后,准确率为95.44%,灵敏度为97.16%,特异性为93.76%,阳性预测值为93.85%,阴性预测值为97.11%,诊断比值比为514。在公开可用的麻省理工学院 - 贝斯以色列女执事医疗中心(MIT - BIH)心房颤动数据库中证实了pRR3.25%的优异诊断特性。在直接比较中,pRR3.25%的诊断特性优于pRR31(连续RR间期相差至少31毫秒的百分比),即到目前为止区分AF和SR的最佳单一参数。

结论

一系列pRRx%参数在1.5%至6%的x%范围内对AF检测具有优异的诊断特性。然而,pRR3.25%优于其他pRRx%参数和pRR31(直到现在,可能是用于AF诊断的最稳健的单一心率变异性参数)。pRRx%对AF的精确诊断特性及其简单的计算使其非常适合在现代心电图技术(移动/可穿戴设备、生物贴片)的长期监测中进行AF检测。pRRx%的诊断特性值得在其他有AF的数据库中进一步探索。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/153c/9865604/21d25eb197b0/jcm-12-00687-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验