Buś Szymon, Jędrzejewski Konrad, Guzik Przemysław
Institute of Electronic Systems, Faculty of Electronics and Information Technology, Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warsaw, Poland.
Department of Cardiology-Intensive Therapy and Internal Disease, Poznan University of Medical Sciences, 60-355 Poznan, Poland.
J Clin Med. 2022 Jul 11;11(14):4004. doi: 10.3390/jcm11144004.
Heart rate is quite regular during sinus (normal) rhythm (SR) originating from the sinus node. In contrast, heart rate is usually irregular during atrial fibrillation (AF). Complete atrioventricular block with an escape rhythm, ventricular pacing, or ventricular tachycardia are the most common exceptions when heart rate may be regular in AF. Heart rate variability (HRV) is the variation in the duration of consecutive cardiac cycles (RR intervals). We investigated the utility of HRV parameters for automated detection of AF with machine learning (ML) classifiers. The minimum redundancy maximum relevance (MRMR) algorithm, one of the most effective algorithms for feature selection, helped select the HRV parameters (including five original), best suited for distinguishing AF from SR in a database of over 53,000 60 s separate electrocardiogram (ECG) segments cut from longer (up to 24 h) ECG recordings. HRV parameters entered the ML-based classifiers as features. Seven different, commonly used classifiers were trained with one to six HRV-based features with the highest scores resulting from the MRMR algorithm and tested using the 5-fold cross-validation and blindfold validation. The best ML classifier in the blindfold validation achieved an accuracy of 97.2% and diagnostic odds ratio of 1566. From all studied HRV features, the top three HRV parameters distinguishing AF from SR were: the percentage of successive RR intervals differing by at least 50 ms (pRR50), the ratio of standard deviations of points along and across the identity line of the Poincare plots, respectively (SD2/SD1), and coefficient of variation-standard deviation of RR intervals divided by their mean duration (CV). The proposed methodology and the presented results of the selection of HRV parameters have the potential to develop practical solutions and devices for automatic AF detection with minimal sets of simple HRV parameters. Using straightforward ML classifiers and the extremely small sets of simple HRV features, always with pRR50 included, the differentiation of AF from sinus rhythms in the 60 s ECGs is very effective.
源自窦房结的窦性(正常)心律(SR)期间心率相当规则。相比之下,心房颤动(AF)期间心率通常不规则。完全性房室传导阻滞伴逸搏心律、心室起搏或室性心动过速是房颤时心率可能规则的最常见例外情况。心率变异性(HRV)是连续心动周期时长(RR间期)的变化。我们研究了HRV参数在通过机器学习(ML)分类器自动检测房颤方面的效用。最小冗余最大相关性(MRMR)算法是最有效的特征选择算法之一,它有助于在从长达24小时的心电图记录中截取的超过53,000个60秒独立心电图(ECG)片段的数据库中,选择最适合区分房颤与窦性心律的HRV参数(包括五个原始参数)。HRV参数作为特征输入基于ML的分类器。使用MRMR算法得出的得分最高的一到六个基于HRV的特征对七种不同的常用分类器进行训练,并使用五折交叉验证和盲法验证进行测试。盲法验证中最佳的ML分类器准确率达到97.2%,诊断比值比为1566。在所有研究的HRV特征中,区分房颤与窦性心律的前三个HRV参数分别是:连续RR间期相差至少50毫秒的百分比(pRR50)、庞加莱图上沿和跨身份线的点的标准差之比(SD2/SD1)以及变异系数——RR间期的标准差除以其平均时长(CV)。所提出的方法以及所展示的HRV参数选择结果有可能开发出实用的解决方案和设备,以最少的简单HRV参数集自动检测房颤。使用直接的ML分类器和极少的简单HRV特征集(始终包含pRR50),在60秒心电图中区分房颤与窦性心律非常有效。