Suppr超能文献

用于双凹红细胞光镊捕获的光线光学模型。

Ray Optics Model for Optical Trapping of Biconcave Red Blood Cells.

作者信息

Tognato Riccardo, Jones Philip H

机构信息

Department of Physics and Astronomy, University College London, Gower St., London WC1E 6BT, UK.

出版信息

Micromachines (Basel). 2022 Dec 29;14(1):83. doi: 10.3390/mi14010083.

Abstract

Red blood cells (RBCs) or erythrocytes are essential for oxygenating the peripherical tissue in the human body. Impairment of their physical properties may lead to severe diseases. Optical tweezers have in experiments been shown to be a powerful tool for assessing the biochemical and biophysical properties of RBCs. Despite this success there has been little theoretical work investigating of the stability of erythrocytes in optical tweezers. In this paper we report a numerical study of the trapping of RBCs in the healthy, native biconcave disk conformation in optical tweezers using the ray optics approximation. We study trapping using both single- and dual-beam optical tweezers and show that the complex biconcave shape of the RBC is a significant factor in determining the optical forces and torques on the cell, and ultimately the equilibrium configuration of the RBC within the trap. We also numerically demonstrate how the addition of a third or even fourth trapping laser beam can be used to control the cell orientation in the optical trap. The present investigation sheds light on the trapping mechanism of healthy erythrocytes and can be exploited by experimentalist to envisage new experiments.

摘要

红细胞(RBCs)或红血球对于人体外周组织的氧合作用至关重要。其物理特性的损害可能导致严重疾病。实验表明,光镊是评估红细胞生化和生物物理特性的有力工具。尽管取得了这一成功,但很少有理论工作研究红细胞在光镊中的稳定性。在本文中,我们报告了一项数值研究,该研究使用光线光学近似法,对光镊中处于健康、天然双凹圆盘形态的红细胞的捕获情况进行了研究。我们使用单光束和双光束光镊研究捕获情况,并表明红细胞复杂的双凹形状是决定作用于细胞的光学力和扭矩的重要因素,最终也是决定红细胞在陷阱内平衡构型的重要因素。我们还通过数值演示了如何添加第三束甚至第四束捕获激光束来控制光阱中细胞的方向。本研究揭示了健康红细胞的捕获机制,可供实验人员用于设想新的实验。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b9e/9867239/3f16d8165408/micromachines-14-00083-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验