Suppr超能文献

通过机器学习对红细胞光学捕获进行建模改进了几何光学计算。

Modelling red blood cell optical trapping by machine learning improved geometrical optics calculations.

作者信息

Tognato R, Bronte Ciriza D, Maragò O M, Jones P H

机构信息

Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, UK.

CNR-IPCF, Istituto per i Processi Chimico-Fisici, Messina, I- 98158, Italy.

出版信息

Biomed Opt Express. 2023 Jun 27;14(7):3748-3762. doi: 10.1364/BOE.488931. eCollection 2023 Jul 1.

Abstract

Optically trapping red blood cells allows for the exploration of their biophysical properties, which are affected in many diseases. However, because of their nonspherical shape, the numerical calculation of the optical forces is slow, limiting the range of situations that can be explored. Here we train a neural network that improves both the accuracy and the speed of the calculation and we employ it to simulate the motion of a red blood cell under different beam configurations. We found that by fixing two beams and controlling the position of a third, it is possible to control the tilting of the cell. We anticipate this work to be a promising approach to study the trapping of complex shaped and inhomogeneous biological materials, where the possible photodamage imposes restrictions in the beam power.

摘要

光镊捕获红细胞有助于探索其生物物理特性,这些特性在许多疾病中都会受到影响。然而,由于红细胞的非球形形状,光力的数值计算速度很慢,限制了可探索的情况范围。在此,我们训练了一个神经网络,它提高了计算的准确性和速度,并使用它来模拟红细胞在不同光束配置下的运动。我们发现,通过固定两束光并控制第三束光的位置,可以控制细胞的倾斜。我们预计这项工作将成为研究复杂形状和不均匀生物材料捕获的一种有前景的方法,其中可能的光损伤对光束功率施加了限制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc52/10368044/8c24c537ff5b/boe-14-7-3748-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验