Department of Biology, Chemistry and Pharmacy, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany.
Molecules. 2023 Jan 11;28(2):718. doi: 10.3390/molecules28020718.
The natural product Salvinorin A (SalA) was the first nitrogen-lacking agonist discovered for the opioid receptors and exhibits high selectivity for the kappa opioid receptor (KOR) turning SalA into a promising analgesic to overcome the current opioid crisis. Since SalA's suffers from poor pharmacokinetic properties, particularly the absence of gastrointestinal bioavailability, fast metabolic inactivation, and subsequent short duration of action, the rational design of new tailored analogs with improved clinical usability is highly desired. Despite being known for decades, the binding mode of SalA within the KOR remains elusive as several conflicting binding modes of SalA were proposed hindering the rational design of new analgesics. In this study, we rationally determined the binding mode of SalA to the active state KOR by in silico experiments (docking, molecular dynamics simulations, dynophores) in the context of all available mutagenesis studies and structure-activity relationship (SAR) data. To the best of our knowledge, this is the first comprehensive evaluation of SalA's binding mode since the determination of the active state KOR crystal structure. SalA binds above the morphinan binding site with its furan pointing toward the intracellular core while the C2-acetoxy group is oriented toward the extracellular loop 2 (ECL2). SalA is solely stabilized within the binding pocket by hydrogen bonds (C210, Y312, Y313) and hydrophobic contacts (V118, I139, I294, I316). With the disruption of this interaction pattern or the establishment of additional interactions within the binding site, we were able to rationalize the experimental data for selected analogs. We surmise the C2-substituent interactions as important for SalA and its analogs to be experimentally active, albeit with moderate frequency within MD simulations of SalA. We further identified the non-conserved residues 2.63, 7.35, and 7.36 responsible for the KOR subtype selectivity of SalA. We are confident that the elucidation of the SalA binding mode will promote the understanding of KOR activation and facilitate the development of novel analgesics that are urgently needed.
天然产物 Salvinorin A(SalA)是第一个被发现对阿片受体具有氮缺乏激动作用的物质,对κ阿片受体(KOR)具有高度选择性,使 SalA 成为一种有前途的镇痛剂,可以克服当前的阿片类药物危机。由于 SalA 存在较差的药代动力学特性,特别是缺乏胃肠道生物利用度、快速代谢失活以及随后作用持续时间短,因此非常需要合理设计具有改善临床可用性的新型定制类似物。尽管 SalA 已经被人们了解了几十年,但它在 KOR 中的结合模式仍然难以捉摸,因为提出了几种相互矛盾的 SalA 结合模式,这阻碍了新型镇痛药的合理设计。在这项研究中,我们通过计算机模拟实验(对接、分子动力学模拟、动力学势),在所有可用的突变研究和结构-活性关系(SAR)数据的背景下,合理确定了 SalA 在活性状态 KOR 中的结合模式。据我们所知,这是自活性状态 KOR 晶体结构确定以来,对 SalA 结合模式的首次全面评估。SalA 位于吗啡烷结合位点上方,呋喃部分指向细胞内核心,而 C2-乙酰氧基基团则指向细胞外环 2(ECL2)。SalA 仅通过氢键(C210、Y312、Y313)和疏水接触(V118、I139、I294、I316)稳定在结合口袋内。通过破坏这种相互作用模式或在结合位点内建立额外的相互作用,我们能够对选定的类似物的实验数据进行合理化解释。我们推测 C2-取代基相互作用对于 SalA 及其类似物具有实验活性很重要,尽管在 SalA 的 MD 模拟中出现的频率适中。我们进一步确定了非保守残基 2.63、7.35 和 7.36 负责 SalA 的 KOR 亚型选择性。我们有信心,阐明 SalA 的结合模式将促进对 KOR 激活的理解,并有助于开发急需的新型镇痛药。