Suppr超能文献

用于高效光催化析氢和固氮的多孔铁掺杂石墨相氮化碳纳米结构的自组装合成

Self-Assembled Synthesis of Porous Iron-Doped Graphitic Carbon Nitride Nanostructures for Efficient Photocatalytic Hydrogen Evolution and Nitrogen Fixation.

作者信息

Koli Valmiki B, Murugan Gavaskar, Ke Shyue-Chu

机构信息

Department of Physics, National Dong Hwa University Shou-Feng, Hualien 97401, Taiwan.

出版信息

Nanomaterials (Basel). 2023 Jan 9;13(2):275. doi: 10.3390/nano13020275.

Abstract

In this study, Fe-doped graphitic carbon nitride (Fe-MCNC) with varying Fe contents was synthesized via a supramolecular approach, followed by thermal exfoliation, and was then used for accelerated photocatalytic hydrogen evolution and nitrogen fixation. Various techniques were used to study the physicochemical properties of the MCN (g-CN from melamine) and Fe-MCNC (MCN for g-CN and C for cyanuric acid) catalysts. The field emission scanning electron microscopy (FE-SEM) images clearly demonstrate that the morphology of Fe-MCNC changes from planar sheets to porous, partially twisted (partially developed nanotube and nanorod) nanostructures. The elemental mapping study confirms the uniform distribution of Fe on the MCNC surface. The X-ray photoelectron spectroscopy (XPS) and UV-visible diffuse reflectance spectroscopy (UV-DRS) results suggest that the Fe species might exist in the Fe state and form Fe-N bonds with N atoms, thereby extending the visible light absorption areas and decreasing the band gap of MCN. Furthermore, doping with precise amounts of Fe might induce exfoliation and increase the specific surface area, but excessive Fe could destroy the MCN structure. The optimized Fe-MCNC nanostructure had a specific surface area of 23.6 m g, which was 8.1 times greater than that of MCN (2.89 m g). To study its photocatalytic properties, the nanostructure was tested for photocatalytic hydrogen evolution and nitrogen fixation; 2Fe-MCNC shows the highest photocatalytic activity, which is approximately 13.3 times and 2.4 times better, respectively, than MCN-1H. Due to its high efficiency and stability, the Fe-MCNC nanostructure is a promising and ideal photocatalyst for a wide range of applications.

摘要

在本研究中,通过超分子方法合成了具有不同铁含量的铁掺杂石墨相氮化碳(Fe-MCNC),随后进行热剥离,然后将其用于加速光催化析氢和固氮。采用各种技术研究了MCN(由三聚氰胺制得的g-CN)和Fe-MCNC(MCN代表g-CN,C代表氰尿酸)催化剂的物理化学性质。场发射扫描电子显微镜(FE-SEM)图像清楚地表明,Fe-MCNC的形态从平面片状变为多孔、部分扭曲(部分发育成纳米管和纳米棒)的纳米结构。元素映射研究证实了铁在MCNC表面的均匀分布。X射线光电子能谱(XPS)和紫外-可见漫反射光谱(UV-DRS)结果表明,铁物种可能以Fe态存在并与N原子形成Fe-N键,从而扩展了可见光吸收区域并减小了MCN的带隙。此外,精确掺杂适量的铁可能会诱导剥离并增加比表面积,但过量的铁会破坏MCN结构。优化后的Fe-MCNC纳米结构的比表面积为23.6 m²/g,是MCN(2.89 m²/g)的8.1倍。为了研究其光催化性能,对该纳米结构进行了光催化析氢和固氮测试;2Fe-MCNC表现出最高的光催化活性,分别比MCN-1H高约13.3倍和2.4倍。由于其高效率和稳定性,Fe-MCNC纳米结构是一种有前途的理想光催化剂,可用于广泛的应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验