Suppr超能文献

金属掺杂石墨相氮化碳对乙酸光催化转化为二氧化碳的影响

The Influence of Metal-Doped Graphitic Carbon Nitride on Photocatalytic Conversion of Acetic Acid to Carbon Dioxide.

作者信息

Sakuna Pichnaree, Ketwong Pradudnet, Ohtani Bunsho, Trakulmututa Jirawat, Kobkeatthawin Thawanrat, Luengnaruemitchai Apanee, Smith Siwaporn Meejoo

机构信息

Center of Sustainable Energy and Green Materials and Department of Chemistry, Faculty of Science, Mahidol University, Nakhon Pathom, Thailand.

Institute for Catalysis, Hokkaido University, Sapporo, Japan.

出版信息

Front Chem. 2022 Mar 23;10:825786. doi: 10.3389/fchem.2022.825786. eCollection 2022.

Abstract

Metal-doped graphitic carbon nitride (MCN) materials have shown great promise as effective photocatalysts for the conversion of acetic acid to carbon dioxide under UV-visible irradiation and are superior to pristine carbon nitride (g-CN CN). In this study, the effects of metal dopants on the physicochemical properties of metal-doped CN samples (Fe-, Cu-, Zn-, FeCu-, FeZn-, and CuZn-doped CN) and their catalytic activity in the photooxidation of acetic acid were investigated and discussed for their correlation, especially on their surface and bulk structures. The materials in the order of highest to lowest photocatalytic activity are FeZn_CN, FeCu_CN, Fe_CN, and Cu_CN (rates of CO evolution higher than for CN), followed by Zn_CN, CuZn_CN, and CN (rates of CO evolution lower than CN). Although Fe doping resulted in the extension of the light absorption range, incorporation of metals did not significantly alter the crystalline phase, morphology, and specific surface area of the CN materials. However, the extension of light absorption into the visible region on Fe doping did not provide a suitable explanation for the increase in photocatalytic efficiency. To further understand this issue, the materials were analyzed using two complementary techniques, reversed double-beam photoacoustic spectroscopy (RDB-PAS) and electron spin resonance spectroscopy (ESR). The FeZn_CN, with the highest electron trap density between 2.95 and 3.00 eV, afforded the highest rate of CO evolution from acetic acid photodecomposition. All Fe-incorporated CN materials and Cu-CN reported herein can be categorized as high activity catalysts according to the rates of CO evolution obtained, higher than 0.15 μmol/min, or >1.5 times higher than that of pristine CN. Results from this research are suggestive of a correlation between the rate of CO evolution photocatalytic oxidation of acetic acid with the threshold number of free unpaired electrons in CN-based materials and high electron trap density (between 2.95 and 3.00 eV).

摘要

金属掺杂的石墨相氮化碳(MCN)材料在紫外-可见光照射下作为将乙酸转化为二氧化碳的有效光催化剂显示出巨大潜力,并且优于原始氮化碳(g-CN)。在本研究中,研究并讨论了金属掺杂剂对金属掺杂的CN样品(Fe-、Cu-、Zn-、FeCu-、FeZn-和CuZn-掺杂的CN)的物理化学性质及其在乙酸光氧化中的催化活性的影响,特别是关于它们的表面和体相结构的相关性。光催化活性从高到低的材料顺序为FeZn_CN、FeCu_CN、Fe_CN和Cu_CN(CO释放速率高于CN),其次是Zn_CN、CuZn_CN和CN(CO释放速率低于CN)。虽然Fe掺杂导致光吸收范围的扩展,但金属的掺入并没有显著改变CN材料的晶相、形态和比表面积。然而,Fe掺杂时光吸收向可见光区域的扩展并不能为光催化效率的提高提供合适的解释。为了进一步理解这个问题,使用两种互补技术,即反向双光束光声光谱(RDB-PAS)和电子自旋共振光谱(ESR)对材料进行了分析。FeZn_CN在2.95至3.00 eV之间具有最高的电子陷阱密度,其乙酸光分解产生的CO释放速率最高。根据获得的CO释放速率,本文报道的所有含Fe的CN材料和Cu-CN可归类为高活性催化剂,其速率高于0.15 μmol/min或比原始CN高1.5倍以上。本研究结果表明,基于CN的材料中游离未配对电子的阈值数量和高电子陷阱密度(在2.95至3.00 eV之间)与乙酸光催化氧化的CO释放速率之间存在相关性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13d9/8983859/d190adba3b69/fchem-10-825786-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验