Suppr超能文献

基于 CBCT 的腭部厚度的人工智能辅助确定腭部正畸微种植体可用部位

Artificial intelligence-assisted determination of available sites for palatal orthodontic mini implants based on palatal thickness through CBCT.

机构信息

State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.

National Key Laboratory of Fundamental Science on Synthetic Vision, Sichuan University, Chengdu, China.

出版信息

Orthod Craniofac Res. 2023 Aug;26(3):491-499. doi: 10.1111/ocr.12634. Epub 2023 Jan 31.

Abstract

OBJECTIVES

To develop an artificial intelligence (AI) system for automatic palate segmentation through CBCT, and to determine the personalized available sites for palatal mini implants by measuring palatal bone and soft tissue thickness according to the AI-predicted results.

MATERIALS AND METHODS

Eight thousand four hundred target slices (from 70 CBCT scans) from orthodontic patients were collected, labelled by well-trained orthodontists and randomly divided into two groups: a training set and a test set. After the deep learning process, we evaluated the performance of our deep learning model with the mean Dice similarity coefficient (DSC), average symmetric surface distance (ASSD), sensitivity (SEN), positive predictive value (PPV) and mean thickness percentage error (MTPE). The pixel traversal method was proposed to measure the thickness of palatal bone and soft tissue, and to predict available sites for palatal orthodontic mini implants. Then, an example of available sites for palatal mini implants from the test set was mapped.

RESULTS

The average DSC, ASSD, SEN, PPV and MTPE for the segmented palatal bone tissue were 0.831%, 1.122%, 0.876%, 0.815% and 6.70%, while that for the palatal soft tissue were 0.741%, 1.091%, 0.861%, 0.695% and 12.2%, respectively. Besides, an example of available sites for palatal mini implants was mapped according to predefined criteria.

CONCLUSIONS

Our AI system showed high accuracy for palatal segmentation and thickness measurement, which is helpful for the determination of available sites and the design of a surgical guide for palatal orthodontic mini implants.

摘要

目的

通过 CBCT 开发一种用于自动腭部分割的人工智能(AI)系统,并根据 AI 预测结果测量腭骨和软组织的厚度,确定腭部微型种植体的个性化可用部位。

材料和方法

从正畸患者中收集了 8400 个目标切片(来自 70 个 CBCT 扫描),由经过良好培训的正畸医生进行标记,并随机分为两组:训练集和测试集。经过深度学习过程,我们使用平均 Dice 相似系数(DSC)、平均对称表面距离(ASSD)、灵敏度(SEN)、阳性预测值(PPV)和平均厚度百分比误差(MTPE)来评估我们的深度学习模型的性能。提出了像素遍历方法来测量腭骨和软组织的厚度,并预测腭部正畸微型种植体的可用部位。然后,对测试集中的一个腭部微型种植体可用部位的示例进行了映射。

结果

分割的腭骨组织的平均 DSC、ASSD、SEN、PPV 和 MTPE 分别为 0.831%、1.122%、0.876%、0.815%和 6.70%,而腭部软组织的分别为 0.741%、1.091%、0.861%、0.695%和 12.2%。此外,根据预设标准映射了一个腭部微型种植体的可用部位示例。

结论

我们的 AI 系统在腭部分割和厚度测量方面表现出很高的准确性,有助于确定可用部位和设计腭部正畸微型种植体的手术导板。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验