文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用[F]FDG PET/CT 影像组学预测非小细胞肺癌患者的 PD-L1 表达状态。

Predicting PD-L1 expression status in patients with non-small cell lung cancer using [F]FDG PET/CT radiomics.

作者信息

Zhao Xiaoqian, Zhao Yan, Zhang Jingmian, Zhang Zhaoqi, Liu Lihua, Zhao Xinming

机构信息

Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, 050011, Hebei, China.

Department of Oncology, The Fourth Hospital of Hebei Medical University and Hebei Provincial Tumor Hospital, Shijiazhuang, Hebei, China.

出版信息

EJNMMI Res. 2023 Jan 22;13(1):4. doi: 10.1186/s13550-023-00956-9.


DOI:10.1186/s13550-023-00956-9
PMID:36682020
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9868196/
Abstract

BACKGROUND: In recent years, immune checkpoint inhibitor (ICI) therapy has greatly changed the treatment prospects of patients with non-small cell lung cancer (NSCLC). Among the available ICI therapy strategies, programmed death-1 (PD-1)/programmed death ligand-1 (PD-L1) inhibitors are the most widely used worldwide. At present, immunohistochemistry (IHC) is the main method to detect PD-L1 expression levels in clinical practice. However, given that IHC is invasive and cannot reflect the expression of PD-L1 dynamically and in real time, it is of great clinical significance to develop a new noninvasive, accurate radiomics method to evaluate PD-L1 expression levels and predict and filter patients who will benefit from immunotherapy. Therefore, the aim of our study was to assess the predictive power of pretherapy [F]-fluorodeoxyglucose ([F]FDG) positron emission tomography/computed tomography (PET/CT)-based radiomics features for PD-L1 expression status in patients with NSCLC. METHODS: A total of 334 patients with NSCLC who underwent [F]FDG PET/CT imaging prior to treatment were analyzed retrospectively from September 2016 to July 2021. The LIFEx7.0.0 package was applied to extract 63 PET and 61 CT radiomics features. In the training group, the least absolute shrinkage and selection operator (LASSO) regression model was employed to select the most predictive radiomics features. We constructed and validated a radiomics model, clinical model and combined model. Receiver operating characteristic (ROC) curves and the area under the ROC curve (AUC) were used to evaluate the predictive performance of the three models in the training group and validation group. In addition, a radiomics nomogram to predict PD-L1 expression status was established based on the optimal predictive model. RESULTS: Patients were randomly assigned to a training group (n = 233) and a validation group (n = 101). Two radiomics features were selected to construct the radiomics signature model. Multivariate analysis showed that the clinical stage (odds ratio [OR] 1.579, 95% confidence interval [CI] 0.220-0.703, P < 0.001) was a significant predictor of different PD-L1 expression statuses. The AUC of the radiomics model was higher than that of the clinical model in the training group (0.706 vs. 0.638) and the validation group (0.761 vs. 0.640). The AUCs in the training group and validation group of the combined model were 0.718 and 0.769, respectively. CONCLUSION: PET/CT-based radiomics features demonstrated strong potential in predicting PD-L1 expression status and thus could be used to preselect patients who may benefit from PD-1/PD-L1-based immunotherapy.

摘要

背景:近年来,免疫检查点抑制剂(ICI)疗法极大地改变了非小细胞肺癌(NSCLC)患者的治疗前景。在现有的ICI治疗策略中,程序性死亡-1(PD-1)/程序性死亡配体-1(PD-L1)抑制剂在全球范围内应用最为广泛。目前,免疫组织化学(IHC)是临床实践中检测PD-L1表达水平的主要方法。然而,鉴于IHC具有侵入性,且无法动态、实时地反映PD-L1的表达情况,因此开发一种新的非侵入性、准确的放射组学方法来评估PD-L1表达水平,并预测和筛选能从免疫治疗中获益的患者具有重要的临床意义。因此,我们研究的目的是评估基于治疗前[F]氟脱氧葡萄糖([F]FDG)正电子发射断层扫描/计算机断层扫描(PET/CT)的放射组学特征对NSCLC患者PD-L1表达状态的预测能力。 方法:回顾性分析2016年9月至2021年7月期间334例治疗前行[F]FDG PET/CT成像的NSCLC患者。应用LIFEx7.0.0软件包提取63个PET和61个CT放射组学特征。在训练组中,采用最小绝对收缩和选择算子(LASSO)回归模型选择最具预测性的放射组学特征。我们构建并验证了放射组学模型、临床模型和联合模型。采用受试者工作特征(ROC)曲线及曲线下面积(AUC)评估这三种模型在训练组和验证组中的预测性能。此外,基于最优预测模型建立了预测PD-L1表达状态的放射组学列线图。 结果:患者被随机分为训练组(n = 233)和验证组(n = 101)。选择两个放射组学特征构建放射组学特征模型。多因素分析显示,临床分期(优势比[OR] 1.579,95%置信区间[CI] 0.220 - 0.703,P < 0.001)是不同PD-L1表达状态的显著预测因素。放射组学模型在训练组(0.706对0.638)和验证组(0.761对0.640)中的AUC均高于临床模型。联合模型在训练组和验证组中的AUC分别为0.718和0.769。 结论:基于PET/CT的放射组学特征在预测PD-L1表达状态方面显示出强大潜力,因此可用于预选可能从基于PD-1/PD-L1的免疫治疗中获益的患者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f89/9868196/713c2dc534fe/13550_2023_956_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f89/9868196/4e1595892a49/13550_2023_956_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f89/9868196/df4e57ade9af/13550_2023_956_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f89/9868196/db3c9c89456b/13550_2023_956_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f89/9868196/713c2dc534fe/13550_2023_956_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f89/9868196/4e1595892a49/13550_2023_956_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f89/9868196/df4e57ade9af/13550_2023_956_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f89/9868196/db3c9c89456b/13550_2023_956_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f89/9868196/713c2dc534fe/13550_2023_956_Fig4_HTML.jpg

相似文献

[1]
Predicting PD-L1 expression status in patients with non-small cell lung cancer using [F]FDG PET/CT radiomics.

EJNMMI Res. 2023-1-22

[2]
A Novel Approach Using FDG-PET/CT-Based Radiomics to Assess Tumor Immune Phenotypes in Patients With Non-Small Cell Lung Cancer.

Front Oncol. 2021-11-17

[3]
[Construction of A Nomogram Prediction Model for PD-L1 Expression 
in Non-small Cell Lung Cancer Based on 18F-FDG PET/CT Metabolic Parameters].

Zhongguo Fei Ai Za Zhi. 2023-11-20

[4]
Radiomics study for predicting the expression of PD-L1 in non-small cell lung cancer based on CT images and clinicopathologic features.

J Xray Sci Technol. 2020

[5]
Radiomics Study for Predicting the Expression of PD-L1 and Tumor Mutation Burden in Non-Small Cell Lung Cancer Based on CT Images and Clinicopathological Features.

Front Oncol. 2021-8-6

[6]
Evaluation of PD-L1 Expression Level in Patients With Non-Small Cell Lung Cancer by F-FDG PET/CT Radiomics and Clinicopathological Characteristics.

Front Oncol. 2021-12-16

[7]
Deep learning radiomics model based on PET/CT predicts PD-L1 expression in non-small cell lung cancer.

Eur J Radiol Open. 2024-1-19

[8]
[F]FDG PET-CT radiomics signature to predict pathological complete response to neoadjuvant chemoimmunotherapy in non-small cell lung cancer: a multicenter study.

Eur Radiol. 2024-7

[9]
An [F]FDG PET/3D-ultrashort echo time MRI-based radiomics model established by machine learning facilitates preoperative assessment of lymph node status in non-small cell lung cancer.

Eur Radiol. 2024-1

[10]
Value of pre-therapy F-FDG PET/CT radiomics in predicting EGFR mutation status in patients with non-small cell lung cancer.

Eur J Nucl Med Mol Imaging. 2020-5

引用本文的文献

[1]
Predicting PD-L1 expression status in NSCLC using radiomic analysis of 18 F-FDG-PET/CT images.

Eur J Nucl Med Mol Imaging. 2025-7-16

[2]
Novel molecular imaging approaches in oncology: towards a more accurate estimation of tumour response.

Curr Opin Oncol. 2025-9-1

[3]
Advances in Multimodal Imaging Techniques for Evaluating and Predicting the Efficacy of Immunotherapy for NSCLC.

Cancer Manag Res. 2025-6-7

[4]
Predictive value of machine learning for PD-L1 expression in NSCLC: a systematic review and meta-analysis.

World J Surg Oncol. 2025-5-22

[5]
PD-L1 Scoring Models for Non-Small Cell Lung Cancer in China: Current Status, AI-Assisted Solutions and Future Perspectives.

Thorac Cancer. 2025-4

[6]
The value of F-fluorodeoxyglucose positron emission tomography-based radiomics in non-small cell lung cancer.

Tzu Chi Med J. 2024-9-3

[7]
Real-World and Clinical Trial Validation of a Deep Learning Radiomic Biomarker for PD-(L)1 Immune Checkpoint Inhibitor Response in Advanced Non-Small Cell Lung Cancer.

JCO Clin Cancer Inform. 2024-12

[8]
Radiomic features based on pyradiomics predict CD276 expression associated with breast cancer prognosis.

Heliyon. 2024-9-3

[9]
Radiomics based on F-FDG PET/CT for prediction of pathological complete response to neoadjuvant therapy in non-small cell lung cancer.

Front Oncol. 2024-7-26

[10]
Predicting programmed death-ligand 1 (PD-L1) expression with fluorine-18 fluorodeoxyglucose ([F]FDG) positron emission tomography/computed tomography (PET/CT) metabolic parameters in resectable non-small cell lung cancer.

Eur Radiol. 2024-9

本文引用的文献

[1]
PD-L1 Over-Expression Varies in Different Subtypes of Lung Cancer: Will This Affect Future Therapies?

Clin Pract. 2022-8-24

[2]
Evaluation of PD-L1 Expression Level in Patients With Non-Small Cell Lung Cancer by F-FDG PET/CT Radiomics and Clinicopathological Characteristics.

Front Oncol. 2021-12-16

[3]
Quantitative CT texture analysis in predicting PD-L1 expression in locally advanced or metastatic NSCLC patients.

Radiol Med. 2021-11

[4]
A deep look into radiomics.

Radiol Med. 2021-10

[5]
PD-L1 in Cytological Samples: A Review and a Practical Approach.

Front Med (Lausanne). 2021-5-7

[6]
Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries.

CA Cancer J Clin. 2021-5

[7]
Radiomics in lung cancer for oncologists.

J Clin Transl Res. 2020-9-2

[8]
Non-invasive decision support for NSCLC treatment using PET/CT radiomics.

Nat Commun. 2020-10-16

[9]
Value of F-FDG PET/CT radiomic features to distinguish solitary lung adenocarcinoma from tuberculosis.

Eur J Nucl Med Mol Imaging. 2021-1

[10]
PD-L1 expression correlation with metabolic parameters of FDG PET/CT and clinicopathological characteristics in non-small cell lung cancer.

EJNMMI Res. 2020-5-19

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索