Suppr超能文献

基于机器学习的 [F]FDG PET/3D-ultrashort echo time MRI 放射组学模型有助于非小细胞肺癌患者术前淋巴结状态评估。

An [F]FDG PET/3D-ultrashort echo time MRI-based radiomics model established by machine learning facilitates preoperative assessment of lymph node status in non-small cell lung cancer.

机构信息

Department of Medical Imaging, Henan Provincial People's Hospital & Zhengzhou University People's Hospital, 7 Weiwu Road, Zhengzhou, 450000, China.

Laboratory of Brain Science and Brain-Like Intelligence Technology, Biomedical Research Institute, Henan Academy of Science, Zhengzhou, China.

出版信息

Eur Radiol. 2024 Jan;34(1):318-329. doi: 10.1007/s00330-023-09978-2. Epub 2023 Aug 2.

Abstract

OBJECTIVES

To develop an [F]FDG PET/3D-UTE model based on clinical factors, three-dimensional ultrashort echo time (3D-UTE), and PET radiomics features via machine learning for the assessment of lymph node (LN) status in non-small cell lung cancer (NSCLC).

METHODS

A total of 145 NSCLC patients (training, 101 cases; test, 44 cases) underwent whole-body [F]FDG PET/CT and chest [F]FDG PET/MRI were enrolled. Preoperative clinical factors and 3D-UTE, CT, and PET radiomics features were analyzed. The Mann-Whitney U test, LASSO regression, and SelectKBest were used for feature extraction. Five machine learning algorithms were used to establish prediction models, which were evaluated by the area under receiver-operator characteristic (ROC), DeLong test, calibration curves, and decision curve analysis (DCA).

RESULTS

A prediction model based on random forest, consisting of four clinical factors, six 3D-UTE, and six PET radiomics features, was used as the final model for PET/3D-UTE. The AUCs of this model were 0.912 and 0.791 in the training and test sets, respectively, which not only showed different degrees of improvement over individual models such as clinical, 3D-UTE, and PET (AUC-training = 0.838, 0.834, and 0.828, AUC-test = 0.756, 0.745, and 0.768, respectively) but also achieved the similar diagnostic efficacy as the optimal PET/CT model (AUC-training = 0.890, AUC-test = 0.793). The calibration curves and DCA indicated good consistency (C-index, 0.912) and clinical utility of this model, respectively.

CONCLUSION

The [F]FDG PET/3D-UTE model based on clinical factors, 3D-UTE, and PET radiomics features using machine learning methods could noninvasively assess the LN status of NSCLC.

CLINICAL RELEVANCE STATEMENT

A machine learning model of F-fluorodeoxyglucose positron emission tomography/ three-dimensional ultrashort echo time could noninvasively assess the lymph node status of non-small cell lung cancer, which provides a novel method with less radiation burden for clinical practice.

KEY POINTS

• The 3D-UTE radiomics model using the PLS-DA classifier was significantly associated with LN status in NSCLC and has similar diagnostic performance as the clinical, CT, and PET models. • The [F]FDG PET/3D-UTE model based on clinical factors, 3D-UTE, and PET radiomics features using the RF classifier could noninvasively assess the LN status of NSCLC and showed improved diagnostic performance compared to the clinical, 3D-UTE, and PET models. • In the assessment of LN status in NSCLC, the [F]FDG PET/3D-UTE model has similar diagnostic efficacy as the [F]FDG PET/CT model that incorporates clinical factors and CT and PET radiomics features.

摘要

目的

基于临床因素、三维超短回波时间(3D-UTE)和 PET 放射组学特征,通过机器学习开发一种用于评估非小细胞肺癌(NSCLC)淋巴结(LN)状态的 [F]FDG PET/3D-UTE 模型。

方法

共纳入 145 例 NSCLC 患者(训练组 101 例,测试组 44 例),均行全身 [F]FDG PET/CT 和胸部 [F]FDG PET/MRI 检查。分析术前临床因素和 3D-UTE、CT 和 PET 放射组学特征。采用 Mann-Whitney U 检验、LASSO 回归和 SelectKBest 进行特征提取。采用五种机器学习算法建立预测模型,采用接受者操作特征曲线(ROC)下面积、DeLong 检验、校准曲线和决策曲线分析(DCA)进行评估。

结果

基于随机森林的预测模型,由四个临床因素、六个 3D-UTE 和六个 PET 放射组学特征组成,被选为最终的 PET/3D-UTE 模型。该模型在训练集和测试集中的 AUC 分别为 0.912 和 0.791,与临床、3D-UTE 和 PET 等单一模型相比,均有不同程度的提高(训练集 AUC 分别为 0.838、0.834 和 0.828,测试集 AUC 分别为 0.756、0.745 和 0.768),与最佳的 PET/CT 模型具有相似的诊断效能(训练集 AUC 为 0.890,测试集 AUC 为 0.793)。校准曲线和 DCA 分别表明该模型具有良好的一致性(C 指数为 0.912)和临床实用性。

结论

基于临床因素、3D-UTE 和 PET 放射组学特征,使用机器学习方法的 [F]FDG PET/3D-UTE 模型可以无创性评估 NSCLC 的 LN 状态。

临床相关性

使用氟代脱氧葡萄糖正电子发射断层扫描/三维超短回波时间的机器学习模型可以无创性评估非小细胞肺癌的淋巴结状态,为临床实践提供了一种具有较小辐射负担的新方法。

关键点

  1. 使用偏最小二乘法(PLS-DA)分类器的 3D-UTE 放射组学模型与 NSCLC 的 LN 状态显著相关,具有与临床、CT 和 PET 模型相似的诊断性能。

  2. 基于临床因素、3D-UTE 和 PET 放射组学特征,使用随机森林(RF)分类器的 [F]FDG PET/3D-UTE 模型可以无创性评估 NSCLC 的 LN 状态,与临床、3D-UTE 和 PET 模型相比,具有更好的诊断性能。

  3. 在评估 NSCLC 的 LN 状态方面,[F]FDG PET/3D-UTE 模型与包含临床因素和 CT、PET 放射组学特征的 [F]FDG PET/CT 模型具有相似的诊断效能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验