Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José, Costa Rica.
Department of Life Sciences, Imperial College London, London, UK.
Microb Biotechnol. 2023 May;16(5):931-946. doi: 10.1111/1751-7915.14215. Epub 2023 Jan 22.
The soil bacterium Pseudomonas putida KT2440 has been shown to produce selenium nanoparticles aerobically from selenite; however, the molecular actors involved in this process are unknown. Here, through a combination of genetic and analytical techniques, we report the first insights into selenite metabolism in this bacterium. Our results suggest that the reduction of selenite occurs through an interconnected metabolic network involving central metabolic reactions, sulphur metabolism, and the response to oxidative stress. Genes such as sucA, D2HGDH and PP_3148 revealed that the 2-ketoglutarate and glutamate metabolism is important to convert selenite into selenium. On the other hand, mutations affecting the activity of the sulphite reductase decreased the bacteria's ability to transform selenite. Other genes related to sulphur metabolism (ssuEF, sfnCE, sqrR, sqr and pdo2) and stress response (gqr, lsfA, ahpCF and sadI) were also identified as involved in selenite transformation. Interestingly, suppression of genes sqrR, sqr and pdo2 resulted in the production of selenium nanoparticles at a higher rate than the wild-type strain, which is of biotechnological interest. The data provided in this study brings us closer to understanding the metabolism of selenium in bacteria and offers new targets for the development of biotechnological tools for the production of selenium nanoparticles.
已证实土壤细菌恶臭假单胞菌 KT2440 能够在需氧条件下从亚硒酸盐中生产硒纳米颗粒;然而,这一过程中涉及的分子因素尚不清楚。在这里,我们通过结合遗传和分析技术,首次报告了该细菌中亚硒酸盐代谢的见解。我们的结果表明,亚硒酸盐的还原是通过涉及中心代谢反应、硫代谢和对氧化应激的反应的相互关联的代谢网络发生的。 sucA、D2HGDH 和 PP_3148 等基因表明,2-酮戊二酸和谷氨酸代谢对于将亚硒酸盐转化为硒是重要的。另一方面,影响亚硫酸盐还原酶活性的突变会降低细菌将亚硒酸盐转化的能力。与硫代谢(ssuEF、sfnCE、sqrR、sqr 和 pdo2)和应激反应(gqr、lsfA、ahpCF 和 sadI)相关的其他基因也被鉴定为参与亚硒酸盐转化。有趣的是,抑制基因 sqrR、sqr 和 pdo2 导致比野生型菌株更高的硒纳米颗粒产量,这具有生物技术意义。本研究提供的数据使我们更接近于理解细菌中硒的代谢,并为开发用于生产硒纳米颗粒的生物技术工具提供了新的目标。