The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs, Lyngby, Denmark.
Institute of Molecular Systems Biology, ETH Zurich, 8093, Zurich, Switzerland.
ISME J. 2021 Jun;15(6):1751-1766. doi: 10.1038/s41396-020-00884-9. Epub 2021 Jan 11.
As a frequent inhabitant of sites polluted with toxic chemicals, the soil bacterium and plant-root colonizer Pseudomonas putida can tolerate high levels of endogenous and exogenous oxidative stress. Yet, the ultimate reason of such phenotypic property remains largely unknown. To shed light on this question, metabolic network-wide routes for NADPH generation-the metabolic currency that fuels redox-stress quenching mechanisms-were inspected when P. putida KT2440 was challenged with a sub-lethal HO dose as a proxy of oxidative conditions. C-tracer experiments, metabolomics, and flux analysis, together with the assessment of physiological parameters and measurement of enzymatic activities, revealed a substantial flux reconfiguration in oxidative environments. In particular, periplasmic glucose processing was rerouted to cytoplasmic oxidation, and the cyclic operation of the pentose phosphate pathway led to significant NADPH-forming fluxes, exceeding biosynthetic demands by ~50%. The resulting NADPH surplus, in turn, fueled the glutathione system for HO reduction. These properties not only account for the tolerance of P. putida to environmental insults-some of which end up in the formation of reactive oxygen species-but they also highlight the value of this bacterial host as a platform for environmental bioremediation and metabolic engineering.
作为经常栖息在受有毒化学物质污染的场所的土壤细菌和植物根定殖菌,假单胞菌能够耐受高水平的内源性和外源性氧化应激。然而,这种表型特性的根本原因在很大程度上仍然未知。为了阐明这个问题,当假单胞菌 KT2440 受到亚致死剂量的 HO 作为氧化条件的代表时,检查了 NADPH 生成的代谢网络途径 - 为氧化应激消除机制提供燃料的代谢货币。C 示踪剂实验、代谢组学和通量分析,以及生理参数的评估和酶活性的测量,揭示了氧化环境中大量通量的重新配置。特别是,周质葡萄糖加工被重新路由到细胞质氧化,戊糖磷酸途径的循环操作导致了显著的 NADPH 形成通量,超过了生物合成需求的~50%。由此产生的 NADPH 盈余反过来又为 HO 还原的谷胱甘肽系统提供燃料。这些特性不仅解释了假单胞菌对环境胁迫的耐受性 - 其中一些最终导致活性氧的形成 - 而且还强调了这种细菌宿主作为环境生物修复和代谢工程的平台的价值。